首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Avian brood parasites have evolved striking begging abilitythat often allows them to prevail over the host progeny in competitionfor parental resources. Host young are therefore selected bybrood parasites to evolve behavioral strategies that reducethe cost of parasitism. We tested the prediction that the intensityof nestling begging displays functioning to attract parentalcare increases across species with the frequency of parasitismby the brown-headed cowbird (Molothrus ater). This was expectedbecause host young should try to prevail over highly competitiveparasitic broodmates in scramble interactions, act more selfishlywhen frequency of parasitism is high because brood parasitesoften affect more severely host condition than conspecific broodmates,and discount the kin selection costs of subtracting resourcesto unrelated parasites. Across 31 North American host species,begging loudness positively covaried with parasitism rate inPasserines, and such effect was stronger in species with smallcompared with large clutches. Begging loudness increased withbrood parasitism and nest predation among the most suitablehost species. These results held after controlling for concomitantecological factors and for common ancestry effects. Our resultssupport the hypothesis that avian brood parasitism has playeda role in the evolution of begging behavior of host young.  相似文献   

2.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

3.
Brood parasites rely entirely on the parental care of host species to raise the parasitic nestlings until independence. The reproductive success of avian brood parasites depends on finding host nests at a suitable stage (i.e. during egg laying) for parasitism and weakly defensive (i.e. non‐ejector) hosts. Finding appropriate nests for parasitism may, however, vary depending on ecological conditions, including parasite abundance in the area, which also varies from one year to another and therefore may influence coevolutionary relationships between brood parasites and their hosts. In this scenario, we explored: 1) the degree of laying synchronization between great spotted cuckoos Clamator glandarius and magpies Pica pica during two breeding seasons, which varied in the level of selection pressure due to brood parasitism (i.e. parasitism rate); 2) magpie responses to natural parasitism in the pre‐laying period and successfulness of parasitic eggs laid at this stage; and 3) magpie responses to experimental parasitism performed at different breeding stages. We found that, during the year of higher parasitism rate, there was an increase in the percentage of parasitic eggs laid before magpies started laying. However, the synchronization of laying was poor both years regardless of the differences in the parasitism rate. The ejection rate was significantly higher during the pre‐egg‐laying and the post‐hatching stages than during the laying stage, and hatching success of parasitic eggs laid during the pre‐egg‐laying stage was zero. Thus, non‐synchronized parasitic eggs are wasted and therefore poor synchronization should be penalized by natural selection. We discuss four different hypotheses explaining poor synchronization.  相似文献   

4.
Host density predicts presence of cuckoo parasitism in reed warblers   总被引:2,自引:0,他引:2  
In some hosts of avian brood parasites, several populations apparently escape parasitism, while others are parasitized. Many migratory specialist brood parasites like common cuckoos, Cuculus canorus , experience a short breeding season, and in order to maintain local parasite populations host densities should be sufficiently high to allow efficient nest search. However, no studies have investigated the possible effect of host density on presence of cuckoo parasitism among populations of a single host species. Here, we investigated possible predictors of common cuckoo parasitism in 16 populations of reed warblers, Acrocephalus scirpaceus , across Europe. In more detail, we quantified the effect of host density, number of host breeding pairs, habitat type, mean distance to nearest cuckoo vantage point, predation rate and latitude on the presence of cuckoo parasitism while controlling for geographical distance among study populations. Host density was a powerful predictor of parasitism. We also found a less pronounced effect of habitat type on occurrence of parasitism, while the other variables did not explain why cuckoos utilize some reed warbler populations and not others. This is the first study focusing on patterns of common cuckoo-host interactions within a specific host species on a large geographic scale. The results indicate that if host density is below a specific threshold, cuckoo parasitism is absent regardless of the state of other potentially confounding variables.  相似文献   

5.
Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi‐broodedness), and utilize the literature on host–pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios.  相似文献   

6.
Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints   总被引:1,自引:0,他引:1  
The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite-host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.  相似文献   

7.
Brood parasitic birds impose variable fitness costs upon their hosts by causing the partial or complete loss of the hosts' own brood. Growing evidence from multiple avian host-parasite taxa indicates that exposure of individual hosts to parasitism is not necessarily random and varies with habitat use, nest-site selection, age or other phenotypic attributes. For instance, nonrandom patterns of brood parasitism had similar evolutionary consequences to those of limited horizontal transmission of parasites and pathogens across space and time and altered the dynamics of both population productivity and co-evolutionary interactions of hosts and parasites. We report that brood parasitism status of hosts of brown-headed cowbirds Molothrus ater is also transmitted across generations in individually colour-banded female prothonotary warblers Protonotaria citrea. Warbler daughters were more likely to share their mothers' parasitism status when showing natal philopatry at the scale of habitat patch. Females never bred in their natal nestboxes but daughters of parasitized mothers had shorter natal dispersal distances than daughters of nonparasitized mothers. Daughters of parasitized mothers were more likely to use nestboxes that had been parasitized by cowbirds in both the previous and current years. Although difficult to document in avian systems, different propensities of vertical transmission of parasitism status within host lineages will have critical implications both for the evolution of parasite tolerance in hosts and, if found to be mediated by lineages of parasites themselves, for the difference in virulence between such extremes as the nestmate-tolerant and nestmate-eliminator strategies of different avian brood parasite species.  相似文献   

8.
There is considerable variation in rejection rates of parasitic eggs among hosts of avian brood parasites. In this article, we develop a model that can be used to predict host egg rejection behavior in brood parasite-host systems in general, by considering both intra- and interclutch variation in host egg appearance; clutch characteristics that may be important in calculating the fitness of individuals adopting rejecter or acceptor strategies. In addition, we consider the importance of learning the appearance of own eggs during the first breeding attempt and host probability of survival between breeding seasons on evolution of rejection behavior. Based on this model we can predict at which level of parasitism fitness of rejecter individuals is higher than that of acceptor individuals and vice versa. The model analyses show that variation in egg appearance can be a key factor for the evolution of host defense against parasitism. In more detail, analyses show that we should expect to find a prolonged learning period only in hosts that have a high intraclutch variation in egg appearance, because such hosts may potentially experience high costs in terms of recognition errors. Furthermore, learning is in general more adaptive in parasite-host systems in which hosts do have some reproductive success even when parasitized, and when parasitism rates are moderate. By including variables that have not been considered in previous models, our model represents a useful tool in investigations of host rejection behavior in various host-parasite systems.  相似文献   

9.
There are at least four main hypotheses that may explain how the evolution of host selection by avian brood parasites could be linked to nest predation among their potential hosts. First, selection may have favoured parasite phenotypes discriminating among hosts on the basis of expected nest failure. Second, parasitized nests may be more easily detected by predators and extra costs of parasitism may accelerate the evolution of host defences. Third, selection may have favoured predator phenotypes avoiding parasitized nests because parasitism enhances nest defence. Fourth, female brood parasites may directly or indirectly induce host nesting failures in order to enhance future laying opportunities. We collected data on brood parasitism and nest failure due to predation to test these hypotheses in a comparative approach using North American passerines and their brood parasite, the brown-headed cowbird Molothrus ater. Under the hypotheses 1 or 3 we predicted brood parasitism to be negatively associated with nest predation across species, whereas this relation is expected to be positive if hypotheses 2 or 4 are true. We demonstrate that independent of host suitability, nest location, habitat type, length of the nestling period, body mass and similarity among species due to common ancestry, species experiencing relatively high levels of nest predation suffered lower levels of cowbird parasitism. Our results suggest a previously ignored role for nest predation suffered by hosts on the dynamics of the coevolutionary relationships between hosts and avian brood parasites. Co-ordinating editor: Dr. F. Stuefer  相似文献   

10.
The ultimate explanations for avian brood parasitism have been studied intensively as a model system for coevolution, but little is known about the proximate mechanisms, for example hormonal regulation, underlying brood parasitic behaviour. In this study, we explored seasonal hormone profiles in two brood parasitic Cuculus species breeding in the Republic of Korea. As brood parasites have relatively simple breeding stages without incubation and provisioning, we predicted that during the breeding season individuals would exhibit similar levels of testosterone (T) and stress‐induced corticosterone (CORT), hormones that are known to be closely related to the transition of breeding stages. We also assessed how these hormone profiles were associated with traits such as body size and sex. Overall, male cuckoos showed similarly high T levels throughout the breeding season, as predicted, but individual variation became greater as the season progressed. Individual CORT levels tended to decrease as the season progressed, although the decrease was significant only in Common Cuckoos Cuculus canorus. We also found that male Lesser Cuckoos Cuculus poliocephalus showed a much higher level of T than females, as expected, but this sexual difference was not observed in Common Cuckoos. Our results suggest that the seasonal hormone profiles of avian brood parasites are likely to be similar to typical hormone profiles expected for non‐brood parasites during the breeding season. This may suggest that not only the breeding cycle but also other factors such as social interaction may be affected by hormonal changes. Further studies are needed to fully understand the proximate mechanism of avian brood parasitism.  相似文献   

11.
Shiny Cowbirds Molothrus bonariensis and Screaming Cowbirds Molothrus rufoaxillaris are closely related brood parasites but the former is socially polygynous or promiscuous and an extreme host generalist, whereas the latter is socially monogamous and parasitizes almost exclusively one host. Females of both species lay in relative darkness, before dawn, relying for host nest location on previous days’ prospecting activity, or possibly on following better‐informed roost associates. We studied the temporal and spatial patterns of roosting behaviour in these species to test the hypothesis that roosting behaviour of cowbirds is related to their breeding strategy (brood parasitism) and reflects differences in strategies between species. We recorded fidelity to a roost, location fidelity within a roost, inter‐individual spatial associations and timing of roost departures and parasitic events, using tagged individuals. Female Shiny Cowbirds and both sexes of Screaming Cowbirds showed marked fidelity in roosting location, and roost departures occurred both during and after the known time window for parasitism, with earlier departures probably corresponding to laying days. Screaming Cowbird females and males that were trapped together and showed high levels of association during the day, also showed high levels of association in the roost. We describe the spatial and temporal patterns of a relatively poorly known aspect of avian ecology in general and the behaviour of brood parasites in particular.  相似文献   

12.
杨灿朝  蔡燕  梁伟 《生物学杂志》2010,27(1):76-79,60
鸟类巢寄生的寄主无论是成乌还是雏鸟,对宿主都是极具伤害性的,因为它们降低了宿主的生育力,然而,无论是在寄主种内还是种间,其伤害性的差异变化很大。综述了以往对这种伤害性差异的各种解释,以往的解释在很大程度上集中在伤害性所带来的利益。认为寄主的伤害性行为可以像病原体的伤害性一样进行分类,伤害性在为寄主带来利益的同时,也伴随着代价,所以,由病原体伤害性进化研究衍生而来的平衡假说,适用于解释鸟类巢寄生伤害理论的进化。  相似文献   

13.
Haemosporidians causing avian malaria are very common parasites among bird species. Their negative effects have been repeatedly reported in terms of deterioration in survival prospects or reproductive success. However, a positive association between blood parasites and avian fitness has also been reported. Here, we studied a relationship between presence of malaria parasites and reproductive performance of the host, a hole‐breeding passerine – the blue tit Cyanistes caeruleus. Since the malaria parasites might affect their hosts differently depending on environmental conditions, we performed brood size manipulation experiment to differentiate parental reproductive effort and study the potential interaction between infection status and brood rearing conditions on reproductive performance. We found individuals infected with malaria parasites to breed later in the season in comparison with uninfected birds, but no differences were detected in clutch size. Interestingly, infected parents produced heavier and larger offspring with stronger reaction to phytohemagglutinin. More importantly, we found a significant interaction between infection status and brood size manipulation in offspring tarsus length and reaction to phytohemagglutinin: presence of parasites had stronger positive effect among birds caring for experimentally enlarged broods. Our results might be interpreted either in the light of the parasite‐mediated selection or terminal investment hypothesis.  相似文献   

14.
Three species of brood parasites are increasingly being recorded as transoceanic vagrants in the Northern Hemisphere, including two Cuculus cuckoos from Asia to North America and a Molothrus cowbird from North America to Eurasia. Vagrancy patterns suggest that their establishment on new continents is feasible, possibly as a consequence of recent range increases in response to a warming climate. The impacts of invasive brood parasites are predicted to differ between continents because many host species of cowbirds in North America lack egg rejection defenses against native and presumably also against invasive parasites, whereas many hosts of Eurasian cuckoos frequently reject non‐mimetic, and even some mimetic, parasitic eggs from their nests. During the 2014 breeding season, we tested the responses of native egg‐rejecter songbirds to model eggs matching in size and color the eggs of two potentially invasive brood parasites. American Robins (Turdus migratorius) are among the few rejecters of the eggs of Brown‐headed Cowbirds (M. ater), sympatric brood parasites. In our experiments, robins rejected one type of model eggs of a Common Cuckoo (C. canorus) host‐race, but accepted model eggs of a second cuckoo host‐race as well as robin‐mimetic control eggs. Common Redstarts (Phoenicurus phoenicurus), frequent hosts of Common Cuckoos in Eurasia, rejected ~50% of model Brown‐headed Cowbird eggs and accepted most redstart‐mimetic control eggs. Our results suggest that even though some hosts have evolved egg‐rejection defenses against native brood parasites, the invasion of brood parasites into new continents may negatively impact both naïve accepter and coevolved rejecter songbirds in the Northern Hemisphere.  相似文献   

15.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

16.
In attempting to evaluate the evolutionary stability of the reproductive strategies of an avian brood parasite, it is important to know whether or not the observed levels of parasitism on host species have changed through time and whether or not new host species are being used in the region under study. In this regard, the islands of Trinidad and Tobago provide an excellent opportunity because they are ornithologically well known and the expansion of the parasitic Shiny Cowbird Molothrus bonariensis into the West Indian region is thought to have originated from Trinidad and Tobago. On the whole, host choice has remained remarkably stable over the past 50–60 years. The three hosts (House Wren Troglodytes aedon, Red-breasted Blackbird Leistes militaris and Yellow-hooded Blackbird Agelaius icterocephalus) known to be heavily parasitized historically remain heavily parasitized today. Only one instance of parasitism of a new host (Tropical Kingbird Tyrannus melancholicus) is recorded. In the case of one intensively studied host, the Yellow-hooded Blackbird, cowbird parasitism had a minimal negative effect on the host's reproductive success. Reproductive equilibrium in this study seemed to be maintained by behavioural adaptations of host and parasite to each other. The stable pattern of host choice by Shiny Cowbirds in Trinidad and Tobago may not develop elsewhere in the West Indian region. Before the cowbird's expansion in the West Indies, potential hosts had no prior experience of brood parasites. Consequently, the island bird populations are unlikely to have evolved defensive strategies and thus may be more vulnerable to reproductive failure as a result of cowbird parasitism, precluding the development of a stable system at this point in time.  相似文献   

17.
Coevolutionary theory predicts that the most common long‐term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least‐defended host species, given that when well‐defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite‐host systems. Here I examine the frequency of the three potential long‐term outcomes of brood parasite–host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long‐term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long‐term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg‐rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable.  相似文献   

18.
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.  相似文献   

19.
It has been suggested that discrimination and rejection of thenestlings of avian brood parasites are most likely to evolvewhen the parasite nestling is raised alongside the host nestlings,for example, many cowbird-host systems. Under these circumstances,the benefits of discrimination are high because the host parentsmay save most of their brood. However, there is a general absenceof nestling rejection behavior among hosts of nonevicting parasites.In a cost-benefit equilibrium model, based on the premise thathost species learn to recognize their offspring through imprintingon first breeding, we show that nestling recognition can beadaptive for hosts of cowbirds, but only under strict conditions.Namely, when host nestling survival alongside the parasite islow, rates of parasitism are high and the average clutch sizeis large. All of these conditions are seldom simultaneouslyachieved in real systems. Most importantly, the parasite nestling,on average, does not sufficiently depress host nestling survivalto outweigh the costs of nestling recognition and rejectionerrors. Thus, we argue that nestling acceptance behaviors byhosts of nonevicting brood parasites may be explained as anevolutionary equilibrium in which recognition costs act as astabilizing selection pressure against rejection when most ofthe host's offspring survive parasitism.  相似文献   

20.
Aim To determine the origins of the host–parasite association between among yellow perch (Perca flavescens[Mitchill]) and the parasites Crepidostomum cooperi Hopkins, Proteocephalus pearsei La Rue and Urocleidus adspectus Beverly Burton. Of secondary interest are the parasites Bunodera luciopercae (Muller) and Proteocephalus percae (Muller) predictably associated with the Eurasian perch. Location The areas considered are the Holarctic, since the upper‐Cretaceous, and contemporary North America. Methods Published and new information from host and parasite phylogenies, palaeontology, palaeogeography and plate tectonics and host biology is incorporated to assess the origins of yellow perch and several of its parasites. This information is used to determine the origins for these host–parasite associations. Results Cladistic analysis suggests a Laurasian origin for Percidae and Perca, and that Perca is sister to the other genera in the family. Parasite phylogenies support a North American origin for the three species associated with yellow perch and a Laurasian origin for B. luciopercae. Proteocephalus pearsei and P. percae are not sister taxa. The fossil record for Perca dates to the Miocene in Europe and the Pleistocene in North America. North America and Europe were connected across the North Atlantic since at least the upper Cretaceous with separation complete by the Miocene. Europe was separated from Asia by the Obik Sea from the late Cretaceous until the Oligocene. Western cordillera orogeny and its accompanying high rates of water flow and Pleistocene glaciation represent barriers to Perca dispersal. Main conclusions The origin of Perca in North America dates at least to the late Oligocene when North America and Europe were connected across the North Atlantic and Europe and Asia were separate landmasses, and does not result from Pleistocene dispersal across Beringia from Asia. The present disjunction of Perca species in North America and Europe is due to the vicariant separation of North America and Europe. Based on the available information, yellow perch and its parasites have a North America origin. The association between yellow perch and the parasites in all cases is a consequence of host switching from other sympatric host species in North America and is not explained by co‐speciation. Even the association between the host‐specific Urocleidus adspectus and yellow perch originated with a host switch and is not due to co‐speciation. The basis for this host switching is geographical and ecological sympatry, especially shared feeding habits, with other North American fish hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号