首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Pterosaurs, a Mesozoic group of flying archosaurs, have become a focal point for debates pertaining to the impact of sampling biases on our reading of the fossil record, as well as the utility of sampling proxies in palaeo‐diversity reconstructions. The completeness of the pterosaur fossil specimens themselves potentially provides additional information that is not captured in existing sampling proxies, and might shed new light on the group's evolutionary history. Here we assess the quality of the pterosaur fossil record via a character completeness metric based on the number of phylogenetic characters that can be scored for all known skeletons of 172 valid species, with averaged completeness values calculated for each geological stage. The fossil record of pterosaurs is observed to be strongly influenced by the occurrence and distribution of Lagerstätten. Peaks in completeness correlate with Lagerstätten deposits, and a recovered correlation between completeness and observed diversity is rendered non‐significant when Lagerstätten species are excluded. Intervals previously regarded as potential extinction events are shown to lack Lagerstätten and exhibit low completeness values: as such, the apparent low diversity in these intervals might be at least partly the result of poor fossil record quality. A positive correlation between temporal patterns in completeness of Cretaceous pterosaurs and birds further demonstrates the prominent role that Lagerstätten deposits have on the preservation of smaller bodied organisms, contrasting with a lack of correlation with the completeness of large‐bodied sauropodomorphs. However, we unexpectedly find a strong correlation between sauropodomorph and pterosaur completeness within the Triassic–Jurassic, but not the Cretaceous, potentially relating to a shared shift in environmental preference and thus preservation style through time. This study highlights the importance of understanding the relationship between various taphonomic controls when correcting for sampling bias, and provides additional evidence for the prominent role of sampling on observed patterns in pterosaur macroevolution.  相似文献   

2.
Bats (Chiroptera) are one of the most successful extant mammalian orders, uniquely capable of powered flight and laryngeal echolocation. The timing and evidence for evolution of their novel adaptations have been difficult to ascertain from the fossil record due to chronological gaps and the fragmentary nature of most fossil bat material. Here, we quantify the quality of the bat fossil record using skeletal and character completeness metrics, which respectively document for each taxon what proportion of a complete skeleton is preserved, and the proportion of phylogenetic characters that can be scored. Completeness scores were collected for 441 valid fossil bat species in 167 genera from the Eocene to the Pleistocene. All metrics record similar temporal patterns: peak completeness in the Lutetian stage reflects the presence of Lagerstätten, while subsequent stages have very low completeness, except an Aquitanian high and a Pleistocene peak in skeletal completeness. Bat completeness is not correlated with intensity of sampling through geological time but has a weak negative correlation with publication date. There is no correlation between taxonomic richness and completeness, as the bat record predominately consists of diagnostic but isolated teeth. Consequently, bat skeletal completeness is the lowest of any previously assessed tetrapod group, but character completeness is similar to parareptiles and birds. Bats have significantly higher character completeness in the northern hemisphere, probably due to heightened historical interest and presence of Lagerstätten. Taxa derived from caves are more complete than those from fluviolacustrine and marine deposits, but do not preserve highly complete specimens.  相似文献   

3.
Variation in preservation and sampling probability clouds our estimates of past biodiversity. The most extreme examples are Lagerstätten faunas and floras. Although such deposits provide a wealth of information and represent true richness better than other deposits, they can create misleading diversity peaks because of their species richness. Here, we investigate how Lagerstätten formations add to time series of vertebrate richness in the UK, Germany and China. The first two nations are associated with well-studied fossil records and the last is a country where palaeontology has a much shorter history; all three nations include noted Lagerstätten in their fossil records. Lagerstätten provide a larger proportion of China's sampled richness than in Germany or the UK, despite comprising a smaller proportion of its fossiliferous deposits. The proportions of taxa that are unique to Lagerstätten vary through time and between countries. Further, in all regions, we find little overlap between the taxa occurring in Lagerstätten and in ‘ordinary’ formations within the same time bin, indicating that Lagerstätten preserve unusual faunas. As expected, fragile taxa make up a greater proportion of richness in Lagerstätten than the remainder of the fossil record. Surprisingly, we find that Lagerstätten account for a minority of peaks in the palaeodiversity curves of all vertebrates (18% in the UK; 36% in Germany and China), and Lagerstätten count is generally not a good overall predictor of the palaeodiversity signal. Vastly different sampling probabilities through taxa, locations and time require serious consideration when analysing palaeodiversity curves.  相似文献   

4.
The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur‐bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample‐based rarefaction (including the first attempt to capture ‘cryptic’ diversity in dinosaurs) were implemented to investigate further the effects of sampling. After ‘removal’ of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian–Toarcian, Bathonian–Callovian and Kimmeridgian–Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian–Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic–Jurassic stages appears to be largely driven by sampling effort. Late Cretaceous diversity is difficult to elucidate and it is possible that this interval remains relatively under‐sampled. Despite its distortion by sampling biases, much of sauropodomorph palaeobiodiversity can be interpreted as a reflection of genuine biological signals, and fluctuations in sea level may account for some of these diversity patterns.  相似文献   

5.
Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerst?tten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have not yet been sampled or are difficult to identify because of the fragmentary nature of the specimens.  相似文献   

6.
7.
McNamara, M.E., Orr, P.J., Manzocchi, T., Alcalá, L., Anadón, P. & Peñalver, E. 2011: Biological controls upon the physical taphonomy of exceptionally preserved salamanders from the Miocene of Rubielos de Mora, northeast Spain. Lethaia, Vol. 45, pp. 210–226. The middle Miocene Rubielos de Mora Konservat‐Lagerstätte of northeast Spain is hosted within profundal, finely laminated, lacustrine mudstones. The diverse biota includes abundant salamanders. Most individuals died during separate episodes and sank rapidly postmortem. Specimens are typically preserved in dorso‐ventral aspect, the most hydrodynamically stable orientation. The near‐cylindrical morphology of the body, however, allowed some carcasses to settle in or subsequently re‐orientate into, lateral orientations. Loss of skeletal elements (i.e. reduced completeness) reflects their location within the body and followed a distal to proximal trend. Two stages are identified: initial loss of a small number of phalanges, followed by loss of more proximal limb bones plus additional phalanges. Disarticulation is more complex: it occurred via several mechanisms (notably, abdominal rupture and re‐orientation of part of the body and limbs during decay) and shows no consistent pattern among specimens. The physical taphonomy of the salamanders is controlled predominantly by intrinsic biological factors, i.e. the geometry of the body and of individual skeletal elements, the orientation, inherent strength and location of specific joints and the extent to which soft tissues, particularly the skin, persist during decay. These biological factors probably control patterns of physical taphonomy of other fossil tetrapods with a similar skeletal configuration. □Articulation, completeness, Konservat‐Lagerstätten, orientation, quantitative taphonomy, salamanders.  相似文献   

8.
With 1429 animal species, the Triassic Cassian Formation in the Dolomites, Southern Alps (Italy), yields the highest species richness reported from any spatially constrained pre-Quaternary formation known to science. The high preserved diversity is partly attributable to a high primary diversity governed by the tropical setting, increasing alpha diversity, and the breadth of habitats spurring beta diversity. More important is the excellent preservation of fossils and the ease with which they can be extracted from the poorly lithified sediments. We propose the term ‘liberation Lagerstätten’ to capture this preservational window. In contrast to conservation Lagerstätten, liberation Lagerstätten like the Cassian Formation originate from normal marine conditions but low-grade diagenesis. Molluscs contribute substantially to species richness, comprising 67% of all invertebrate species in the Cassian Formation. The gastropod dominance (39% of all species) is nearly as great as in Recent tropical settings, contradicting the concept of a substantial Cenozoic rise.  相似文献   

9.
Coleoid cephalopods are characterized by internalization of their shell, and are divided into the ten‐armed Decabrachia (squids and cuttlefish) and the eight‐armed Vampyropoda (octopuses and vampire squid). They have a rich fossil record predominantly of the limited biomineralized skeletal elements they possess: arm hooks, statoliths, mouthparts (the buccal mass) and internal shell (gladius or pen), although exquisitely preserved soft tissue coleoids are known from several Lagerstätten worldwide. Recent studies have shown that although morphological similarities between extant decabrachian gladii and fossil examples exist, no known examples of fossil decabrachians are currently known. However, molecular clock data and phylogenetic bracketing suggest that they should be present in Lagerstätten that are rich in vampyropod soft tissue fossils (i.e. Hâkel and Hâdjoula Lagerstätten, Cretaceous, Lebanon). We propose that a hitherto unknown taphonomic bias pertaining to the differing methods of buoyancy control within coleoid groups limits preservation potential. Both negatively and neutrally buoyant decabrachians use chemical buoyancy control (ammonia) whereas vampyropods do not. In the event of rapid burial in an environment conducive to exceptional preservation, ammonia dramatically decreases the ability of the decabrachian carcass to generate the required pH for authigenic calcium phosphate replacement, limiting its preservation potential. Moreover, the greater surface area and comparatively fragile dermis further decrease the potential for fossilization. This taphonomic bias may have contributed to the lack of preserved labile soft‐tissues in other cephalopods groups such as the ammonoids.  相似文献   

10.
A tyrannosauroid dinosaur from the Upper Jurassic of Portugal   总被引:2,自引:0,他引:2  
Fragmentary theropod remains from the Upper Jurassic (Kimmeridgian) of Guimarota, Portugal, represent a new taxon of theropod dinosaurs, Aviatyrannis jurassica gen. et sp. nov. Together with Stokesosaurus from the Morrison Formation of North America, Aviatyrannis represents the oldest known tyrannosauroid, indicating that tyrannosauroid origins may be found in the Middle–Late Jurassic of Europe/North America. Furthermore, current evidence suggests that early tyrannosaurs were rather small animals, which is in general accordance with their origin amongst the generally rather small coelurosaurs.  相似文献   

11.
Little is known about the palaeoenvironments of the Early Cretaceous lakes of western Liaoning. Uncertainties exist especially about the water depth, water temperatures and annual temperature fluctuations. Here, we analyse the preservation of the most abundant fish of the lakes, the teleost Lycoptera, articulated skeletons of which occur in large concentrations suggestive of mass mortality. Taphonomic features such as degree of disarticulation, orientation patterns and displacement of skeletal elements reveal distinct preservational patterns. They suggest that the water temperature was low during winter and exhibited pronounced seasonal fluctuations. The depth of the lakes was not deep. Possible causes of the fish mortality are discussed, of which anoxia is favoured. This leads to a more refined palaeoenvironmental model for these palaeolakes, which harbour one of the most important Mesozoic Lagerstätten.  相似文献   

12.
Pneumatic (air‐filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird‐line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large‐bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non‐avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This ‘common pattern’ was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird‐like feature among non‐avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non‐volant, maniraptorans resulted in energetic savings as part of a multi‐system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small‐bodied maniraptorans may indicate avian‐like high‐performance endothermy.  相似文献   

13.
An incomplete skeleton of the ichthyosaur Ophthalmosaurus icenicus Seeley, 1874 excavated in the Oxfordian–Kimmeridgian beds south of the town of Syzran (Samara Region) is described. Members of the genus Ophthalmosaurus are characterized by a unique combination of characters, most of which are well-pronounced in the specimen described here: the extracondylar area of the basioccipital is reduced, but still visible beyond the occipital condyle and has a well-pronounced ventral notch; the scapular shaft is mediolaterelly flattened; the humerus has three distal facets: the anterior facet is the smallest; the facet for the accessory preaxial element has a sharpened anterior margin; the facet for the radius faces distally; the facet for the ulna faces posterodistally; the posterior margin of the ulna is concave and sharpened, involved in the perichondral ossification; the intermedium is rhomboid, with two distal facets equal in size for the second and third distal carpals; the epipodial and autopodial elements are round and thickened, loosely arranged in the fin. This specimen is the first reliable evidence of the presence of Ophthalmosaurus in the Oxfordian–Kimmeridgian of Russia. The previously described remains of a Kimmeridgian ichthyosaur referred to as O. undorensis Efimov, 1991 should be identified as Ophthalmosauridae indet.  相似文献   

14.
Historically, ecomorphological inferences regarding theropod (i.e. ‘predatory’) dinosaurs were guided by an assumption that they were singularly hypercarnivorous. A recent plethora of maniraptoran discoveries has produced evidence challenging this notion. Here, we report on a new species of maniraptoran theropod, Nothronychus graffami sp. nov. Relative completeness of this specimen permits a phylogenetic reassessment of Therizinosauria—the theropod clade exhibiting the most substantial anatomical evidence of herbivory. In the most comprehensive phylogenetic study of the clade conducted to date, we recover Therizinosauria as the basalmost maniraptoran lineage. Using concentrated changes tests, we present evidence for correlated character evolution among herbivorous and hypercarnivorous taxa and propose ecomorphological indicators for future interpretations of diet among maniraptoran clades. Maximum parsimony optimizations of character evolution within our study indicate an ancestral origin for dietary plasticity and facultative herbivory (omnivory) within the clade. These findings suggest that hypercarnivory in paravian dinosaurs is a secondarily derived dietary specialization and provide a potential mechanism for the invasion of novel morpho- and ecospace early in coelurosaurian evolution—the loss of obligate carnivory and origin of dietary opportunism.  相似文献   

15.
《Palaeoworld》2022,31(3):455-477
At Cabo Mondego (western central Portugal), the Upper Jurassic marine to coastal succession contains several stratigraphic levels preserving dinosaur footprints on the surface bedding plane, as well as convolute bedding and soft sediment injection structures interpreted as dinoturbation structures. At least nineteen new three-dimensional structures observed in cross-sections are interpreted as produced by dinosaur trampling. The identification of three-dimensional structures of dinosaur footprints provides an important complement to the information obtained from footprints preserved on single bedding surfaces, such as the substrate consistency, potential trackmaker identification, and the possibility to enhance the distinction of sauropods and tridactyl dinosaurs, and paleoenvironmental interpretations. In the lower part of the Arenitos da Boa Viagem Formation, eight levels of probable lowermost Kimmeridgian age (ca. 157–156 Ma), displaying the above-mentioned deformational structures, were analyzed in detail. They support interpretations concerning the relationship between the footprints and the substrate consistency at the time of their formation. Three distinct cohesiveness patterns, defined by the penetration of the feet from the paleosurface, are the result of different degrees of substrate cohesiveness. Identifying the trackmakers of levels belonging to the middle Oxfordian–lower Kimmeridgian has important implications for Late Jurassic ecosystem reconstructions, as the footprints observed in Cabo Mondego indicate a change in the morphotypes throughout the Upper Jurassic succession.  相似文献   

16.
The origin of birds and avian flight from within the archosaurian radiation has been among the most contentious issues in paleobiology. Although there is general agreement that birds are related to theropod dinosaurs at some level, debate centers on whether birds are derived directly from highly derived theropods, the current dogma, or from an earlier common ancestor lacking suites of derived anatomical characters. Recent discoveries from the Early Cretaceous of China have highlighted the debate, with claims of the discovery of all stages of feather evolution and ancestral birds (theropod dinosaurs), although the deposits are at least 25 million years younger than those containing the earliest known bird Archaeopteryx. In the first part of the study we examine the fossil evidence relating to alleged feather progenitors, commonly referred to as protofeathers, in these putative ancestors of birds. Our findings show no evidence for the existence of protofeathers and consequently no evidence in support of the follicular theory of the morphogenesis of the feather. Rather, based on histological studies of the integument of modern reptiles, which show complex patterns of the collagen fibers of the dermis, we conclude that "protofeathers" are probably the remains of collagenous fiber "meshworks" that reinforced the dinosaur integument. These "meshworks" of the skin frequently formed aberrant patterns resembling feathers as a consequence of decomposition. Our findings also draw support from new paleontological evidence. We describe integumental structures, very similar to "protofeathers," preserved within the rib area of a Psittacosaurus specimen from Nanjing, China, an ornithopod dinosaur unconnected with the ancestry of birds. These integumental structures show a strong resemblance to the collagenous fiber systems in the dermis of many animals. We also report the presence of scales in the forearm of the theropod ornithomimid (bird mimic) dinosaur, Pelecanimimus, from Spain. In the second part of the study we examine evidence relating to the most critical character thought to link birds to derived theropods, a tridactyl hand composed of digits 1-2-3. We maintain the evidence supports interpretation of bird wing digit identity as 2,3,4, which appears different from that in theropod dinosaurs. The phylogenetic significance of Chinese microraptors is also discussed, with respect to bird origins and flight origins. We suggest that a possible solution to the disparate data is that Aves plus bird-like maniraptoran theropods (e.g., microraptors and others) may be a separate clade, distinctive from the main lineage of Theropoda, a remnant of the early avian radiation, exhibiting all stages of flight and flightlessness.  相似文献   

17.
Terrestrial insects are often remarkably well preserved in lacustrine Konservat Lagerstätten. However, the assumption that carcasses should sink fast through the water column seems contradictory as this scenario is unlikely due to excessive buoyancy and surface tension. The mechanisms that promote rapid and permanent emplacement onto the sediment surface (RPESS) of such terrestrial animal remains are not fully understood. Here we use taphonomic experiments to show that floating in water, growth of microbial biofilms and reception of rapid sediment load promote RPESS of terrestrial insect remains in lentic water bodies. Our results show that the optimum conditions for RPESS occur when terrestrial insects enter a lentic water body in articulation, experience brief decay in association with growth of microbes, then are buried rapidly by airborne volcanic ash. These results provide a model for preservation of articulated terrestrial insects and emphasize the importance of microbial activity and volcanism for insect preservation in lacustrine Konservat Lagerstätten.  相似文献   

18.
Dinosaur behaviour has little legacy in the fossil record and the rarity of fossil soft tissues makes it difficult to evaluate. Indirect evidence from bonebeds, trackways, nesting traces and in-group comparisons with extant Archosauria suggests that the only substantive arguments to be made for dinosaur sociality concern cranial ornamentation and herding behaviour. There is currently no reliable method to determine gender from skeletal remains. Dinosaur reproductive anatomy was a unique combination of crocodilian and avian characters and extant models indicate that dinosaurs copulated using a reptilian ‘leg over back’ posture. Reliable evidence for post-hatching care in dinosaurs is lacking and extant archosaurs yield little insight. A hypothesis is proposed that for the majority of dinosaurs there was no post-hatching care provided which would have allowed adults energy acquisition that would otherwise have been required for defence and provisioning to be redirected towards growth and increased fecundity, both traits for which there is fossil evidence. Arguments suggesting that the more advanced aspects of extant avian care boasting an explicit coelurosaurian theropod origin are rejected as these behaviours appear unique to the Neornithes. Three ancestral care hypotheses are tested and none conform in a satisfactory manner with body fossil and ichnological evidence.  相似文献   

19.
A core recovered in the North German Basin at the locality of Eulenflucht in the Süntel Mountains, 30 km SE of Hannover, Germany, is interpreted in terms of Oxfordian to Kimmeridgian sequence stratigraphy of this basin. Thirteen different facies are recognized which record the evolution of an outer ramp into a restricted hypersaline lagoon. Changes in grain size, variations in the amount of components, fluctuations of the matrix content and of the microscopic texture, as well as vertical lithofacies stacking patterns, were integrated to define small-scale sequences. Medium-scale sequences were identified by changes in facies combinations of the constituent small-scale sequences. Large-scale sequences were differentiated by facies proportion statistics in the distinct medium-scale sequences. This allows the complete sequence stratigraphic subdivision of the Oxfordian and Kimmeridgian succession to be interpreted. The stable carbon isotopic composition of bulk samples enables a correlation with chemostratigraphic records found elsewhere. This result is supported by an ostracod biostratigraphy that allows a chronostratigraphic assignment of the succession. The large-scale sequences were controlled by climate and local tectonic movements. It is proposed that a long-term shallowing trend during the Kimmeridgian time was induced by regional uplift.  相似文献   

20.
《Comptes Rendus Palevol》2014,13(5):369-381
The La Voulte Lagerstätte (Jurassic, France) is characterized by a diverse and exceptionally well-preserved fauna. It was located along the western Tethyan margin where the submarine relief was steep. The sedimentation was dominated by marls suggesting a low energy and deep-water depositional environment. The La Voulte biota is remarkable for its biodiversity with about 60 different species. The major components are the arthropods (50% of the species), the cephalopods (10%) and the echinoderms (10%). Among the arthropods, the composition and some anatomical features suggest a relatively deep-water environment characterized by dim-light conditions. The cephalopods and other organisms (pycnogonids, asterids), have extant analogues that all live in deep-water niches always exceeding 200 m. The fauna as a whole bears the characteristic features of the present-day bathyal fauna. The La Voulte Lagerstätte may be one of the rare Jurassic Lagerstätten, if not the unique, to have fossilized a deep marine fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号