首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   

3.
4.
Phytochrome‐interacting factor 1 (PIF1) inhibits light‐dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high‐level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light‐dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light‐dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high‐level expression of PIF1 mRNA in imbibed seeds.  相似文献   

5.
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next‐generation sequencing (ChIP‐seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3‐containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere‐proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene‐rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3‐depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon‐rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere‐proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.  相似文献   

6.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

7.
8.
9.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

10.
Increased inbreeding is an inevitable consequence of selection in livestock populations. The analysis of high‐density single nucleotide polymorphisms (SNPs) facilitates the identification of long and uninterrupted runs of homozygosity (ROH) that can be used to identify chromosomal regions that are identical by descent. In this work, the distribution of ROH of different lengths in five Italian cattle breeds is described. A total of 4095 bulls from five cattle breeds (2093 Italian Holstein, 749 Italian Brown, 364 Piedmontese, 410 Marchigiana and 479 Italian Simmental) were genotyped at 54K SNP loci. ROH were identified and used to estimate molecular inbreeding coefficients (FROH), which were compared with inbreeding coefficients estimated from pedigree information (FPED) and using the genomic relationship matrix (FGRM). The average number of ROH per animal ranged from 54 ± 7.2 in Piedmontese to 94.6 ± 11.6 in Italian Brown. The highest number of short ROH (related to ancient consanguinity) was found in Piedmontese, followed by Simmental. The Italian Brown and Holstein had a higher proportion of longer ROH distributed across the whole genome, revealing recent inbreeding. The FPED were moderately correlated with FROH > 1 Mb (0.662, 0.700 and 0.669 in Italian Brown, Italian Holstein and Italian Simmental respectively) but poorly correlated with FGRM (0.134, 0.128 and 0.448 for Italian Brown, Italian Holstein and Italian Simmental respectively). The inclusion of ROH > 8 Mb in the inbreeding calculation improved the correlation of FROH with FPED and FGRM. ROH are a direct measure of autozygosity at the DNA level and can overcome approximations and errors resulting from incomplete pedigree data. In populations with high linkage disequilibrium (LD) and recent inbreeding (e.g. Italian Holstein and Italian Brown), a medium‐density marker panel, such as the one used here, may provide a good estimate of inbreeding. However, in populations with low LD and ancient inbreeding, marker density would have to be increased to identify short ROH that are identical by descent more precisely.  相似文献   

11.
Post‐translational modification of proteins by O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is catalyzed by O‐GlcNAc transferases (OGTs). O‐GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O‐GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O‐GlcNAc modification to augment ATX1‐mediated H3K4me3 histone modification at FLC locus. SEC transfers an O‐GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post‐translational O‐GlcNAc modification‐mediated mechanism for regulation of HKMT activity and establish the function of O‐GlcNAc signaling in epigenetic processes in plants.  相似文献   

12.
Intragenomic conflict, the conflict of interest between different genomic regions within an individual, is proposed as a mechanism driving both the rapid evolution of heterochromatin‐related proteins and the establishment of intrinsic genomic incompatibility between species. Although molecular studies of laboratory model organisms have demonstrated the link between heterochromatin evolution and hybrid abnormalities, we know little about their link in natural systems. Previously, we showed that F1 hybrids between the Japan Sea stickleback and the Pacific Ocean stickleback show hybrid male sterility and found a region responsible for hybrid male sterility on the X chromosome, but did not identify any candidate genes. In this study, we first screened for genes rapidly evolving under positive selection during the speciation of Japanese sticklebacks to find genes possibly involved in intragenomic conflict. We found that the region responsible for hybrid male sterility contains a rapidly evolving gene encoding a heterochromatin‐binding protein TRIM24B. We conducted biochemical experiments and showed that the binding affinity of TRIM24B to a heterochromatin mark found at centromeres and transposons, histone H4 lysine 20 trimethylation (H4K20me3), is reduced in the Japan Sea stickleback. In addition, mRNA expression levels of Trim24b were different between the Japan Sea and the Pacific Ocean testes. Further expression analysis of genes possibly in the TRIM24B‐regulated pathway showed that some gypsy retrotransposons are overexpressed in the F1 hybrid testes. We, therefore, demonstrate that a heterochromatin‐binding protein can evolve rapidly under positive selection and functionally diverge during stickleback speciation.  相似文献   

13.
With the access to draft genome sequence assemblies and whole‐genome resequencing data from population samples, molecular ecology studies will be able to take truly genome‐wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single‐nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10‐fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later‐generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.  相似文献   

14.
15.
16.
  • H3K9ac, an epigenetic marker, is widely distributed in plant genomes. H3K9ac enhances gene expression, which is highly conserved in eukaryotes. However, genome‐wide studies of H3K9ac in monocot species are limited, and the changes in H3K9ac under drought stress for individual genes are still not clear.
  • We analysed changes in the H3K9ac level of Brachypodium distachyon under 20% PEG‐6000‐simulated drought stress conditions. We also performed chromatin immunoprecipitation, followed by next generation sequencing (ChIP‐seq) on H3K9ac to reveal changes in H3K9ac for individual genes at the genome‐wide level.
  • Our study showed that H3K9ac was mainly enriched in gene exon regions. Drought increased or decreased the H3K9ac level at specific genomic loci. We identified 40 genes associated with increased H3K9ac levels and 36 genes associated with decreased H3K9ac levels under drought stress. Further, RT‐qPCR analyses showed that H3K9ac was positively associated with gene expression of those drought‐responsive genes.
  • We conclude that H3K9ac enhances the expression level of a large number of drought‐responsive genes under drought stress in B. distachyon. The data presented here will help to reveal the correlation of some specific drought‐responsive genes and their enriched H3K9ac levels in the model plant B. distachyon.
  相似文献   

17.
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to ‘genomic shock’ and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.  相似文献   

18.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号