首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. In addition to the pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetate (Z5-10:OAc, Z7-12:OAc and Z9-14:OAc), it has previously been shown that the sex pheromone gland of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae Schiff) contains 10:OAc, 12:OAc, Z5-12:OAc, Z9-12:OAc, 11–12:OAc, Z5-14:OAc, Z7-14:OAc and Z11-16:OAc. To find out whether any of these additional compounds is involved in the sex pheromone communication in A. segetum, a comprehensive electro-physiological and behavioural investigation was conducted. Single-sensillum recordings on male antennae revealed three subtypes of sensilla among the previously so-called Z5-10:OAc sensilla. One subtype was identified having one receptor neurone (A) that responded to Z5-10:OAc with a large spike amplitude and another neurone (B) that responded to (Z)-5-decenol (Z5-10:OH) with a small spike amplitude. In another subtype the B neurone responded to Z5-12:OAc and sometimes also to 27-12:OAc and 10:OAc, in addition to responding to Z5-10:OH. In a third subtype the A neurone responded to all acetates identified from the female pheromone gland, whereas the small spike amplitude neurone was tuned to Z5-10:OH. A flight tunnel assay showed that blends composed of nine, eight or seven compounds were equivalent to the previously identified three-component pheromone blend in eliciting male behavioural responses. In field trapping tests, blends of eleven, nine or seven compounds did, however, catch significantly more moths than the three-component blend. Further assays showed that only 25- 12:OAc could significantly increase the catch numbers when added to the three-component blend, and thus qualified as a fourth pheromone component in A. segerum. The behavioural significance of additional female-produced acetates — for which males possess antennal receptors — is suggested, but may be impossible to confirm because of ‘diminishing returns’ when trying to refine a multicomponent pheromone further.  相似文献   

2.
The female‐produced sex pheromone of the Durra stem borer, Sesamia cretica (Lederer) (Lepidoptera: Noctuidae), had been previously characterized as a 75:25 blend of (Z)‐9‐tetradecenol (Z9‐14:OH) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) based on field trapping experiments. The low attraction of this blend in the field led us to further investigate the sex pheromone of this pest. Coupled gas chromatography with electroantennographic detection (GC‐EAD) analysis of female pheromone gland extracts consistently revealed three EAD‐active compounds. According to their GC retention times, mass spectra, and comparative EAG analyses with authentic standards, two of these compounds were found to be the previously reported components Z9‐14:OH and Z9‐14:OAc, whereas a third compound was identified as (Z)‐11‐hexadecenol (Z11‐16:OH). In wind tunnel experiments, the highest male responses were elicited by ratios of Z9‐14:OH, Z9‐14:OAc, and Z11‐16:OH, ranging from 90:1:9 to 90:5:5. In field tests, the 90:1:9 ratio of the blend loaded onto rubber septum dispensers was significantly more effective than single‐component, two‐component, and any other ratio of the three‐component blend. The greater effectiveness of this blend resulted in a more accurate detection of S. cretica flight activity compared with the previously reported two‐component blend.  相似文献   

3.
Attraction of maleAgrotis segetum Dennis & Schiffermüller (Lepidoptera: Noctuidae) to sex pheromone traps in fields, which were treated with one or three pheromone components was investigated. Small plots of 1/4ha size were treated with synthetic pheromone, released by 25 evenly dispersed latex rubber tube dispensers. The dispensers were loaded with either 500 μg Z5-10:OAc (50 mg/ha), or 1000 μg Z7-12:OAc (100 mg/ha), or a 3-component mixture consisting of 500 μg Z5-10:OAc+1000 μg Z7-12:OAc+1000 μg Z9-14:OAc. Pheromone traps were placed both within and outside of the treated area in a cross design, with an intertrap spacing of 15 m. Release rates from disruption dispensers were measured in the laboratory after being exposed in the field. The release rates of the components were estimated to be 0.44, 0.11, and 0.06 μg/h/dispenser for Z5-10:OAc, Z7-12:OAc and Z9-14:OAc, respectively. The highest effect of disruption was achieved by the three-component blend, resulting in a significant suppression of trap catches extending 5 m outside of the treated area. The Z5-10:OAc treatment resulted in reduced trap catches inside the treated area, but the effect did not extend outside. Z7-12:OAc alone did not result in any significant reduction in trap catch. The results indicate that different mechanisms may explain the disruptive effect of the treatments and that the single pheromone components are not as effective as the three-component blend.  相似文献   

4.
Field studies using the synthetic sex pheromone of Trichophysetis cretacea, a trinary blend of (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), (Z)‐11‐hexadecenal (Z11‐16:Ald) and (Z)‐11‐hexadecenol (Z11‐16:OH), were performed in Sichuan to determine operational parameters for detection and control, such as dispenser type, blend ratio, dosage, and trap type, height and density. Of three pheromone dispensers tested, grey halo‐butyl isoprene elastomeric septa were significantly more effective than polyvinyl chloride capillary tubing or silicone rubber septa. The ratio of the three components in the blend significantly affected moth catch. In the halo‐butyl isoprene septa, the most effective ratio was 5 : 2 : 1 Z11‐16:OAc:Z11‐16:Ald:Z11‐16:OH. Sticky wing traps caught significantly more moths than water, noctuid moth or cone funnel traps. The most effective height at which wing traps were hung was 20 cm above the jasmine plants. Optimum trap density was 45 traps per hectare. Addition of volatile jasmine compounds did not increase the attractiveness of the sex pheromone. A dosage of 50 μg Z11‐16:OAc per lure was most effective in the autumn weather conditions of Quanwei. These data provide sufficient information to develop effective protocols for using the T. cretacea pheromone to detect and monitor this pest in the jasmine fields.  相似文献   

5.
Recently, larvae of Ostrinia were found feeding on the leopard plant Farfugium japonicum (Asteraceae), previously unrecorded as a host plant of this genus. The adult moths that developed from these borers were morphologically similar to, but distinct from, Ostrinia zaguliaevi, a monophagous species specialized for feeding on another Asteraceae plant, the butterbur Petasites japonicus. Although the taxonomical status of the moth feeding on F. japonicum is to be determined, distinct morphological differences in the adults strongly suggest this to be a new species (hereafter referred to as O. sp.). To gain an insight into the reproductive isolation between O. sp. and other members of the genus Ostrinia, the female sex pheromone and the males’ response to it were investigated using samples collected from F. japonicum. (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), (Z)‐11‐tetradecenyl acetate (Z11‐14:OAc), (E)‐11‐tetradecenyl acetate (E11‐14:OAc), tetradecyl acetate, and (Z)‐11‐hexadecenyl acetate were identified as candidates for sex pheromone components by analyses using gas chromatographs coupled to a mass spectrometer (GC‐MS) and electroantennographic detector (GC‐EAD). A series of bioassays of male responses in a wind‐tunnel and a field cage indicated that the former three compounds are essential for attracting males, and the latter two have no synergistic effect on the attraction. We therefore concluded that Z9‐14:OAc, Z11‐14:OAc and E11‐14:OAc are the sex pheromone components of O. sp. Although the same three compounds are used as the sex pheromone components of O. zaguliaevi and another congener, Ostrinia zealis, the blend proportions differed greatly among the three (Z9‐14:OAc/Z11‐14:OAc/E11‐14:OAc = 18/76/6 in O. sp., 45/50/5 in O. zaguliaevi and 70/6/24 in O. zealis). Differences in sex pheromones could contribute to the reproductive isolation between O. sp. and the other two Ostrinia species if males of each species exhibit a narrow window of response to their own blend ratio.  相似文献   

6.
Orientation disruption (indicated by reduced trap catch) of adult male Planotortrix octo (Lepidoptera: Tortricidae) was examined in eight small plot trials at four apple orchards over three years, using either (i) Z5-14:OAc (inhibitor), (ii) a blend of 25:75 Z5-14:OAc and Z8-14:OAc (inhibitor plus partial pheromone), or (iii) 50:50 Z8-14:OAc and 14:OAc (pheromone) in polyethylene rope dispensers at 100 or 200 dispensers per 0.1 ha. Use of inhibitor plus partial pheromone gave significant reductions in trap catch in all eight trials. Inhibitor alone gave statistically significant reductions in catch in all three trials where it was tested, but was not as effective as the inhibitor plus partial pheromone in one of these trials. Three trials comparing efficacy between the pheromone and the inhibitor plus partial pheromone blend showed no difference between these blends. Analysis of covariance of trap catch after treatment, using the catch in the first generation in each trap as a covariate, was useful for detection of treatment effects. Traps containing the blend of Z5-14:OAc and Z8-14:OAc were not attractive, suggesting that false trails may not be important where this blend is used, since it is an incomplete pheromone and contains an inhibitor.Disruption of mating was examined in closed containers, with dispensers containing (i), or (ii). Mating frequency was 86.4% in the controls, compared to only 14.3% with the inhibitor present alone, or 1.7% with partial pheromone and inhibitor. The frequency of mating in scotophase within 1–8 h after termination of 24 h exposure to a very high dose of the non-attractive blend of 25%:75% Z5-/Z8-14:OAc was identical for treated and untreated P. octo males.  相似文献   

7.
Athetis lepigone has been recorded in many countries in Europe and Asia, but it had never been documented as an agricultural pest until 2005. For the purpose of using the sex pheromone to control this pest, we conducted a study to identify the sex pheromone of A. lepigone by gas chromatography with an electroantennographic detector (GC‐EAD) and GC coupled with mass spectrometry (GC/MS) analyses. Three pheromone candidates were detected by GC‐EAD analysis in the extracts of the female sex pheromone gland, and two candidates were identified as (Z)‐7‐dodecenyl acetate (Z7‐12:OAc) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) in a ratio of 1:5 by mass spectral analysis of natural pheromone components and dimethyl disulphide adducts. In the field male trapping test, the traps baited with the binary blend captured high number of males, while traps with single component hardly caught males, indicating that the two components are essential for the male attractiveness. In addition, the optimum ratios of Z7‐12:OAc and Z9‐14:OAc were determined as 3:7–7:3, and the best doses for the binary blend (at ratio of 3:7 between Z7‐12:OAc and Z9‐14:OAc) were 0.25–0.5 mg/trap, based on the number of male catches. The identification of a highly attractive sex pheromone will help in developing efficient strategies for monitoring and control of A. lepigone.  相似文献   

8.
The sex pheromone of Phyllonorycter ringoniella (Matsumura) (Lepidoptera: Gracillariidae) has been identified to be a blend of (Z)‐10‐tetradecenyl acetate (Z10‐14:OAc) and E4,Z10‐tetradecadienyl acetate (E4,Z10‐14:OAc) in Japan, Korea, and China. However, the commercial product based on previous results is not attractive enough to be used for monitoring and controlling apple leafminer populations in the field. We re‐investigated the attractiveness of the two pheromone components, singly and in blends, in apple orchards in Shangdong and Shaanxi, the main apple‐growing provinces in China. Our results revealed that Z10‐14:OAc alone was not attractive to Pringoniella male moths in the field, but E4,Z10‐14:OAc alone not only was strongly attractive but caught more males than any of the blends of Z10‐14:OAc and E4,Z10‐14:OAc tested. The most attractive blend ratios differed slightly for the two locations. No clear dose–response relationship was obtained for the 2:8 blend of Z10‐14:OAc and E4,Z10‐14:OAc. However, the dose–response field study of E4,Z10‐14:OAc alone showed that 1 mg per lure achieved the highest moth catch. These findings differ from the previous report of the best pheromone blend in China. Our data showed that E4,Z10‐14:OAc is the major component of the pheromone of Pringoniella.  相似文献   

9.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), is a worldwide pest of cruciferous crops. We examined the female pheromone production and male response to various pheromone blends in two Korean populations. Gas chromatography (GC) and GC‐mass spectrometry (MS) analyses of pheromone gland extracts revealed that females produce (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH) in a ratio of 8:100:18. However, (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), a previously reported component of the sex attractant of a Canadian P. xylostella population was not detected in gland extracts of the Korean one. Field tests showed that Z11‐16:Ald and Z11‐16:OAc are essential for attraction of male moths, and the highest attraction is obtained with a 10:90 blend mimicking the blend found in gland extracts. Addition of 1 or 10% of Z11‐16:OH to the 10:90 blend of Z11‐16:Ald and Z11‐16:OAc significantly increased attraction. However, attraction was strongly antagonized by the addition of as little as 0.1% of Z9‐14:OAc to the most attractive ternary blend. The ternary blend of Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH at a ratio of 10:90:1 was more effective at catching P. xylostella males than the Japanese three‐component blend or the Canadian four‐component blend in Korea. These results suggest that there is geographical variation in the pheromone systems of this species.  相似文献   

10.
GC-EAD analyses of pheromone gland extracts of calling female Sparganothis sulfureana revealed at least 6 compounds that consistently elicited antennal responses from male antennae. In addition to the major pheromone compound, (E)-11-tetradecenyl acetate (E11–14:OAc), which was previously reported, the other compounds were found to be (E)-9-dodecenyl acetate (E9–12:OAc), (Z)-9-dodecenyl acetate (Z9–12:OAc), (Z)-9-tetradecenyl acetate (Z9–14:OAc), (Z)-11-tetradecenyl acetate (Z11–14:OAc), and (E)-11-tetradecenol (E11–14:OH). Tetradecyl acetate, hexadecyl acetate and hexadecenyl acetates were also present in the extracts, but elicited no EAG response from male antennae. Wind tunnel tests demonstrated that males from New Jersey responded equally well to a blend containing five pheromone components in relative to the pheromone glands of calling females. Different male-response profiles from field-trapping tests conducted in the states of Wisconsin and New Jersey were observed, respectively. Significantly higher numbers of male S. sulfureana were caught in New Jersey in traps baited with the binary blend of E11–14:OAc (30 μg) with 1% of Z11–14:OAc, but males from Wisconsin responded equally well to traps containing blends of E11–14:OAc with 0–10% of Z11–14:OAc. The addition of more than 10% of Z11–14:OAc to the primary pheromone compound reduced male captures significantly in both states. Male catches were doubled by adding E9–12:OAc and E11–14:OH to the most attractive binary blend in both states. The trapping test with caged live virgin female moths showed that males in Wisconsin preferred females from the local population than those from New Jersey. The differences in male responses observed may indicate the existence of pheromone polymorphism in this species.  相似文献   

11.
Upwind orientation flights of codling moth males Cydia pomonella L. to a single source of sex pheromone (E,E)‐8,10‐dodecadienol (codlemone) are significantly reduced when blending it with pheromone antagonists, either with codlemone acetate, (E,E)‐8,10‐dodecadienyl acetate, or with the codlemone isomer (E,Z)‐8,10‐dodecadienol. However, once activated by a pheromone stimulus, males no longer distinguish between a pheromone source and these antagonistic blend sources. This shows that the pheromone stimulus required for the initiation of an upwind flight response differs from the stimulus for maintaining upwind flight and landing at the source. In contrast to pheromone antagonists, males discriminate between pheromone alone and a blend source of pheromone and the plant volatile pear ester, ethyl (2E,4Z)‐2,4‐decadienoate. This indicates a difference in the detection and neural integration of pheromone and plant volatile stimuli.  相似文献   

12.
Pheromone production in the female turnip moth, Agrotis segetum, is under the control of a brain factor. This factor was demonstrated to be a proteinaceous substance termed pheromone biosynthesis activating neuropeptide-like substance (PBAN-like substance). The sex pheromone of Swedish A. segetum includes (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate, and (Z)-9-tetradecenyl acetate as major components. Decapitation of a female decreased pheromone production significantly. Pheromone production was restored by injection of homogenates of either male or female brain-suboesophageal ganglion or the corpora cardiaca alone. Pheromonotropic activity was also found in homogenates of the female thoracic ganglion and abdominal ganglion that were obtained during scotophase. Injection of female brain and thoracic ganglion homogenates made from insects during the scotophase induced two and four times as much Z7-12:OAc, respectively, as injection with similar homogenates from photophase. As little as one-eighth female equivalent (FE) brain homogenate was sufficient to increase the amount of Z7-12:OAc. The effect of brain homogenate on pheromone titer reached its maximum after 30 min. The activity of the PBAN-like substance present in female brain extracts was not correlated to the age of the donor. Injection of hemolymph collected during either photophase or scotophase into decapitated females did not increase the pheromone titer. The target site of the PBAN-like substance was not the pheromone gland, and the ventral nerve cord was not involved in the transportation of the PBAN-like substance, which implies a mode of action different from what has been reported in other moths. Brain homogenates obtained during photophase from females of African A. segetum, Spodoptera littoralis, or Ostrinia nubilalis as well as synthetic Bombyx-PBAN also induced pheromone production in decapitated Swedish female A. segetum. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Studies were conducted in Chile and the United States to compare the attractiveness of various commercial sex pheromone lures and two experimental lures for oriental fruit moth, Grapholita molesta (Busck), in peach orchards treated with or without sex pheromone dispensers. The experimental lures contained the three‐component sex pheromone blend of G. molesta: Z‐8‐dodecenyl acetate, E‐8‐dodecenyl acetate and Z‐8‐dodecenol (Z8‐12:OH), and the sex pheromone of codling moth, Cydia pomonella (L.), (E,E)‐8,10‐dodecadien‐1‐ol, (codlemone). Commercial lures varied in their substrate, initial loading and blend ratio of components. Significant differences in male catches were found among commercial lures in orchards treated with or without sex pheromone dispensers. Experimental lures with the addition of codlemone significantly increased the catches of G. molesta using lures loaded with 0%, 1% or 5% Z8‐12:OH in the G. molesta blend compared with the same ratio of components in just the G. molesta blend. The experimental lures were significantly more attractive than all commercial lures in the untreated orchard. However, moth catch with the experimental lures in the sex pheromone‐treated orchard was only intermediate among all of the lures tested. These findings highlight the need to develop more effective and standardized lures that can be used in trap‐based monitoring programme for this important pest.  相似文献   

14.
Olfactory receptor neuron (ORN) response was measured to assess why some males ("rare males") of the Asian corn borer (ACB), Ostrinia furnacalis, have a broad behavioral response to fly upwind to both the ACB and the European corn borer (ECB), Ostrinia nubilalis, pheromone blends. We performed single-sensillum electrophysiological recordings on ACB males that had been behaviorally assessed for upwind flight response to the ACB blend [60:40 (Z)-12-tetradecenyl acetate (Z12-14:OAc) to (E)-12-tetradecenyl acetate (E12-14:OAc)], as well as to ECB (Z-strain) and ECB (E-strain) blends [3:97 and 99:1 (Z)-11-tetradecenyl acetate (Z11-14:OAc) to (E)-11-tetradecenyl acetate (E11-14:OAc)]. Sensilla from all types of males had large- and small-spike-sized ORNs responding strongly to Z12- or E12-14:OAc, but weakly to Z11- and E11-14:OAc. In the majority of males ("normal males") that flew upwind only to the ACB blend, Z11-14:OAc elicited responses in an intermediate spike-sized ORN associated with behavioral antagonism that is mainly tuned to (Z)-9-tetradecenyl acetate (Z9-14:OAc). In the rare-type ACB males that flew to both the ACB and ECB pheromone blends, Z11-14:OAc did not stimulate this ORN. Increased responsiveness to ancestral pheromone components by ORNs associated with behavioral antagonism could be instrumental in reproductive character displacement, or in reinforcement and reproductive isolation during speciation by helping to increase assortative mating between males and females in derived populations that use novel sex pheromone blends.  相似文献   

15.
In this study, we have compared the release of sex pheromone from mating disruption dispensers exposed in the field for 12 months and from calling females. The main pheromone component of the grapevine moth, Lobesia botrana (D. and S.) (Lepidoptera: Tortricidae), is (E)‐7,(Z)‐9‐dodecadienyl acetate, and a minor component is (Z)‐9‐dodecenyl acetate. Aged dispensers from two different years emitted a much higher amount of both pheromone components than calling females. However, the summer temperature during field exposure influenced the release from mating disruption dispensers the following year. In the wind tunnel, male L. botrana were equally attracted to 12‐month, field‐exposed dispensers, a standard monitoring pheromone lure, and to synthetic (E)‐7,(Z)‐9‐dodecadienyl acetate sprayed at the rate of 0.6–60 ng h?1. Field trapping tests confirmed that aged dispensers from both years were at least as attractive to L. botrana males as a standard monitoring pheromone lure. The possible contribution of previously applied dispensers to the mating disruption efficacy during following applications is discussed.  相似文献   

16.
The major components of the sex pheromone of Dioryctria abietivorella (Groté) (Lepidoptera: Pyralidae) were recently identified as (9Z,11E)‐tetradecadien‐1‐yl acetate (9Z,11E‐14:Ac) and a polyunsaturated, long‐chain hydrocarbon (3Z,6Z,9Z,12Z,15Z)‐pentacosapentaene (C25 pentaene). The optimal ratio of these components and the role of potential minor components were not fully determined in the initial short report on the pheromone's identification. We tested different ratios of the two major components loaded into grey halobutyl rubber septum dispensers, placed in sticky traps deployed in conifer breeding arboreta. The optimal ratio of the two components was 200 µg 9Z,11E‐14:Ac to 2000 µg C25 pentaene. (Z)‐9‐Tetradecen‐1‐yl acetate, which had been identified previously in female pheromone gland extracts, and five other potential minor pheromone components, were tested individually as additions to the optimized two‐component lure blend. None of the ternary blends were more attractive than the optimized two‐component blend, at the ratios tested. Two lure adjuvants, a UV stabilizer (Sumisorb 300) and the antioxidant butylated hydroxytoluene, added individually or together, did not affect the attractiveness of the optimized lure blend. The Pherotech diamond sticky trap baited with the optimized lure blend was the most effective trap design among eight types of sticky trap and a bucket style trap that were tested. Traps baited with synthetic lures were as attractive as traps baited with virgin female moths. The optimized two‐component lure blend in the Pherotech diamond trap is recommended for monitoring fir coneworm infestations. The availability of an effective synthetic pheromone opens the possibility for control tactics using mating disruption or attract‐and‐kill techniques.  相似文献   

17.
Females of the leaf miner moth Phyllonorycter acerifoliella (Z.) [=Ph. sylvella (Hw.)] and Ph. heegerella (Z.) (Lepidoptera: Gracillariidae: Lithocolletinae) release their sex pheromone at the beginning of photophase. The periodicity of the `calling' behaviour of Ph. acerifoliella females was established. Three compounds from calling virgin Ph. heegerella females were collected by the Solid Phase Micro Extraction (SPME) technique and identified as (Z)-8-tetradecenyl acetate (Z8-14:OAc), tetradecyl acetate (14:OAc) and (Z)-8-tetradecenol (Z8-14:OH) in the ratio (88±3):(2±0.6):(10±5) by capillary gas chromatography and mass spectrometry. Field trapping experiments demonstrated that the first two compounds are important for the attraction of conspecific males. Z8-14:OAc was found to be attractive when tested separately, while 14:OAc acted as synergist. The attractivity of the three component blend was reduced by 10% admixture of either (E)-10-dodecenyl acetate (E10-12:OAc) or (Z)-10-tetradecenyl acetate (Z10-14:OAc).Field tests of Z10-, Z8- and E10-14:OAc, identified from Ph. acerifoliella females, demonstrated that the first two compounds were essential for the attraction of conspecific males; so both are sex pheromone components. The attractivity of the three component blend of Z10- Z8- and E10-14:OAc was reduced by 10% admixture of (E)-10-dodecenol (E10-12:OH). The following four semiochemical compounds, Z8-14:OAc, Z8-14:OH, E10-14:OAc and 14:OAc, identified from phyllonoryctid females, as well as two sex attraction antagonists for Ph. acerifoliella and Ph. heegerella males, E10-12:OAc and Z10-14:OAc, are new for the family Gracillariidae. The results of field trapping experiments revealed mechanisms ensuring the specificity of the chemocommunication systems in Ph. acerifoliella, Ph. heegerella and Ph. ulmifoliella (Hb.) moths.  相似文献   

18.
Analysis by gas chromatography with electroantennographic detection of extracts of pheromone glands derived from calling females of the sugarcane‐borer Diatraea flavipennella revealed two antennally active compounds. These components were identified as (Z)‐9‐hexadecenal (Z9–16:Ald) and (Z)‐11‐hexadecenal (Z11–16:Ald) by comparison of the retention times of the natural compounds and the synthetic compounds supported by two‐dimensional gas chromatography – time‐of‐flight mass spectrometric analysis and the positions of the double bounds in the chains were confirmed from the mass spectral fragmentation patterns of their dimethyldisulphide adducts. The analysis indicated that Z9–16:Ald and Z11–16:Ald were present in the sex pheromone in the proportions 25 : 75. Trace amounts of tetradecanal, hexadecanal, (Z)‐7‐hexadecenal (Z7–16:Ald), (Z)‐9‐hexadecen‐1‐ol and (Z)‐11‐hexadecen‐1‐ol were also found in the extract, but of these only Z9–16:Ald and Z11–16:Ald appeared to be antennally active. Behavioural bioassays demonstrated that a binary blend composed of Z9–16:Ald and Z11–16:Ald in the ratio of 25 : 75 induced a response in D. flavipennella virgin males similar to that elicited by live virgin females or by an hexane extract of the pheromone glands of calling females. Z9–16:Ald and Z11–16:Ald are, therefore, considered to be the major constituents of the female sex pheromone of D. flavipennella.  相似文献   

19.
Addition of (Z)-11-hexadecenyl acetate (Z11-16:Ac) into a normally attractive binary blend of Heliothis virescens pheromone components resulted in a suppression of upwind flight and source location by males. Male response was reduced even at the lowest dosages of Z11-16:Ac tested but upwind flight and source location were most clearly reduced when the loading of Z11-16:Ac reached 10% or more of the (Z)-11-hexadecenal (Z11-16:Ald) loading (the major component present in the binary blend). Similar patterns of suppression in response were noted when Z11-16:Ac was added to binary blends of pheromone components at both 10 and 100 μg loadings of Z11-16:Ald. Males in casting flight following upwind flight in a mechanically generated pulsed plume, responded to the interception of a subsequent, single binary-blend filament by making a toward-source upwind surge. Responses of males to a single filament that was tainted by a level of Z11-16:Ac that had allowed some reduced level of upwind flight and source location to occur in the previous plume experiments were diminished compared with their control counterparts. Analysis of the flight tracks revealed that the surges in response to single tainted filaments were stunted because males made fewer significant changes in course angles steered, airspeeds generated, and in the tempo of counterturns executed. Accepted: 28 December 1996  相似文献   

20.
The allium leafminer, Acrolepiopsis sapporensis Matsumura (Lepidoptera: Acrolepiidae), is a pest of Allium species (Liliaceae) in Asia and Hawaii, USA. We identified candidate sex pheromone components in pheromone gland extracts of female moths and field tested the response of male moths to blends with different components and ratios. Gas chromatographic comparison of abdominal tip extracts from both sexes showed three female‐specific components: (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH). These compounds were identified by mass spectral analysis of natural pheromone components and dimethyldisulfide adducts, and retention index comparisons with synthetic standards. The average ratio of three components, Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH, in female extract was 33:100:14. Field trapping experiments indicated that all three components were essential for maximal attraction of male moths. Traps baited with a ternary blend mimicking the blend found in the pheromone gland extracts caught significantly more males than traps baited with caged live females. Increasing doses of the pheromone blend in the lures from 0.01 to 1.0 mg increased catches of male A. sapporensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号