首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

2.
Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   

3.
Summary The short-circuit current (SCC) across isolated skin from bullfrog larvae in developmental stage XXI was small and insensitive to amiloride. Overnight incubation of this tissue with 10-6 M aldosterone stimulated the SCC from 1.35±0.55 to 14.55±4.12 A·cm-2 with 11.18±4.46 A·cm-2 being blocked by 100 M amiloride. Histologic examination of aldosterone-treated skins revealed a separation of the apical cell layer from the underlying epidermis that was not seen in untreated preparations. The onset of amiloride-sensitive Na+ transport thus coincided with the exposure of the apical surface of newly differentiated epithelial cells. Similar results were obtained with skin from stage XXI larvae whose rate of metamorphosis had been stimulated by 10 g·l-1 thyroxine (T4) but not with skin from T4-treated larvae in stages XIX and XX. Fluctuation analysis of the amiloride-sensitive SCC of the above preparations failed to show a consistent Lorentzian component in the power-density spectrum. Fluctuation analysis was possible on skins from larvae whose development had been accelerated by 7–9 days treatment with 10 g·l-1 triiodothyronine (T3). Aldosterone treatment of these tissues resulted in a significant increase in Na+ channel density.Abbreviations ASCC component of the short-circuit current (A·cm-2) that is blocked by amiloride - fc frequency (Hz) at which the magnitude of the Lorenzian component of the power spectra is reduced by half - i current (pA) through individual amiloride-sensitive Na+ channels - I Na+ amiloride-sensitive short-circuit current (A·cm-2) that remains after treatment with a given amiloride concentration - k 01 the rate constant (s-1·M-1) for the association of amiloride with Na+ channels - k 10 rate constant (s-1) for the dissociation of amiloride from Na+ channels - K b magnitude of the power spectrum (A2·s·cm-2) at a frequency of 1 Hz - KSCC short-circuit (A·cm-2) current with K+ as the primary mucosal cation - M density of amiloride-sensitive Na+ channels in the apical cell membrane - SCC short-circuit current (A·cm-2) - S (f) magnitude of the power spectra (A2·s·cm-2) at a given frequency - S 0 the magnitude of the plateau region of the Lorentzian component of the power spectra (A2·s·cm-2) - T 3 Triiodothyronine - T 4 Thyroxine  相似文献   

4.
Summary Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2±1.8 A·cm-2 (n=10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol·l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol·l-1 lanthanum (La3-). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is typically found in the colon of vertebrates.Abbreviations G T transepithelial conductance - I sc short circuit current - I Na transepithelial Na-current - m mucosal - s serosal - PDS power density spectrum - f frequency - f c corner frequency of the Lorentzian component of the PDS - S(f) power density of the Lorentzian component of the PDS - So plateau value of the Lorentzian component of the PDS  相似文献   

5.
Summary Chloride-stimulated K+ secretion by Manduca sexta midgut (5th-instar larvae) was measured as K+-carried short-circuit current of the tissue mounted in an Ussing chamber. Microscopic parameters, such as single-channel current and channel density for the rate-determining passive transport step across the basolateral goblet cell membrane (i.e. K+ channels), were estimated by means of current-fluctuation analysis of the K+ channel blockade by haemolymph-side Ba2+ ions. Ba2+ was equally effective with Cl- or gluconate (Glu-) as the principal ambient anion. The Ba2+-induced K+ channel conduction noise is reflected by a Lorentzian, or relaxation, noise component in the power spectrum of the K+ current fluctuations. A reduced Lorentzian plateau value, but an unchanged corner frequency, were observed when Cl- was replaced by Glu-. The results from the analysis of a two-state model of K+ channel block by Ba2+, with respect to the anion-replacement effects, suggest that the observed changes in K+ current and Lorentzian plateau value mirror a complex change of the underlying parameters: Cl- omission reduces single channel current but increases channel density so that the product of single channel current and channel density is smaller in Glu- than in Cl-. It seems likely that basolateral K+ channels (1) are subject to anionic gating ligands, and (2) depend on anions with respect to the rate of K+ transfer through and open K+ channel.Abbreviations a.c. alternating current - single-channel conductance - E K K+ Nernst potential - f frequency contained in current noise - f c corner frequency - Glu- gluconate - G t transepithelial conductance - I sc short-circuit current - I K K+ current - I K(max) maximal K+ current - i single-channel current - K Ba barium inhibition constant - K m Michaelis constant of saturating K+ current - k 01 and k 10 barium association and dissociation rate constant, respectively - M K+ channel density - S f power density - S o Lorentzian plateau value - P o channel-open probability - P K K+ permeability - V sc cellular potential at short-circuit These results have already been presented in part, at the 1989 joint meeting of the German and Israel Physiological Societies in Jerusalem (Zeiske et al. 1990).  相似文献   

6.
Summary The transepithelial electrical characteristics of the isolated yolk sac membrane of normal in ovo or shell-less cultured chick embryos were investigated. In normal chicks the potential difference (blood side positive relative to yolk side) and short-circuit current of the membrane increased during development. Ouabain (10-4 M) on the blood side (basolateral side, serosal side) significantly decreased potential difference and short-circuit current but was without effect on the yolk side (brush border side, mucosal side). Substitution of choline for Na+ in the bathing solutions abolished the potential difference and the short-circuit current; when Na+ replaced choline this effect was reversed. Amiloride added to both sides of the yolk sac membrane had no effect on potential difference or short-circuit current. Injection of aldosterone (50 g) and T3 (10 M) into yolk did not induce amiloride sensitivity. The short-circuit current was not altered by addition of either glucose or alanine to the bath. The short-circuit current of the yolk sac membrane of shell-less cultured embryos was significantly lower than that of normal controls. Addition of Ca2+ to the serosal bathing medium did not reverse the foregoing condition, but decreased the short-circuit current. It is concluded that the yolk sac short-circuit current is Na+ dependent and increases with developmental age in the chick embryo.Abbreviations Hepes N-2-hydroxyethylpiperazine-N-2-ethaneoulphonic acid - PD potential difference - R resistance - SCC short-circuit current - TRIS tris-hydroxymethyl aminomethane - T3 3,3-5-triiodo-l-thyronine  相似文献   

7.
Summary In this paper we describe current fluctuations in the mammalian epithelium, rabbit descending colon. Pieces of isolated colon epithelium bathed in Na+ or K+ Ringer's solutions were studied under short-circuit conditions with the current noise spectra recorded over the range of 1–200 Hz. When the epithelium was bathed on both sides with Na+ Ringer's solution (the mucosal solution contained 50 m amiloride), no Lorentzian components were found in the power spectrum. After imposition of a potassium gradient across the epithelium by replacement of the mucosal solution by K+ Ringer's (containing 50 m amiloride), a Lorentzian component appeared with an average corner frequency,f c=15.6±0.91 Hz and a mean plateau valueS o=(7.04±2.94)×10–20 A2 sec/cm2. The Lorentzian component was enhanced by voltage clamping the colon in a direction favorable for K+ entry across the apical membrane. Elimination of the K+ gradient by bathing the colon on both sides with K+ Ringer's solutions abolished the noise signal. The Lorentzian component was also depressed by mucosal addition of Cs+ or tetraethylammonium (TEA) and by serosal addition of Ba2+. The one-sided action of these K+ channel blockers suggests a cellular location for the fluctuating channels. Addition of nystatin to the mucosal solution abolished the Lorentzian component. Serosal nystatin did not affect the Lorentzian noise. This finding indicates an apical membrane location for the fluctuating channels. The data were similar in some respects to K+ channel fluctuations recorded from the apical membranes of amphibian epithelia such as the frog skin and toad gallbladder. The results are relevant to recent reports concerning transcellular potassium secretion in the colon and indicate that the colon possesses spontaneously fluctuating potassium channels in its apical membranes in parallel to the Na+ transport pathway.  相似文献   

8.
Experiments were performed on isolated, stripped colonic epithelia of low-salt-adapted hens (Gallus domesticus) in order to characterize acid secretion by this tissue. With symmetric, weak buffer solutions, colonic epithelia acidified both mucosal and serosal sides. Titration measurements of the mucosal acidification rate (pH-stat technique) averaged 1.63±0.25 Eq·cm-2·h-1. Mucosal acidification was also evident in colons from high-salt-adapted birds and in low-salt-adapted coprodeum, but was completely abolished in the high-salt coprodeum. Mucosal acidification by low-salt-adapted colonic epithelium was unaffected by sodium replacement, mucosal amiloride (10-3 mol·l-1), and serosal ouabain (5x10-4 mol·l-1), although all three treatments significantly reduced or reversed the short-circuit current. Acetazolamide (10-3 mol·l-1, serosal) reduced mucosal acidification by 15% and simultaneously increased short-circuit current by a similar amount. Colonic epithelia incubated in glucose-free solutions had significantly lower acidification rates (0.59±0.13 Eq·cm-2·h-1, P<0.002 versus controls) and addition of glucose (15 mmol·l-1), but not galactose, partially restored acidification to control levels. Anoxia (N2 gassing) completely inhibited short-circuit current, but reduced acidification by only 30%. A surface microclimate pH, nearly 2 pH units more acidic than the bath pH of 7.1–7.4 was measured in low-salt-adapted colon and coprodeum. The acid microclimate of both tissues was partially attenuated by adaptation to a high-salt diet. Colonic microclimate pH was dependent on the presence of glucose and sensitive to the bath pH. Histochemical staining for carbonic anhydrase localized this enzyme to cytoplasm and lateral margins of one subfraction of colonic cells, and to cytoplasm in a second subpopulation Intense staining was also evident in subepithelial capillaries. These results suggest that a large part of mucosal acidification and maintenance of the acid microclimate in hen colon may be dependent on glycolysis and metabolic acid production, although a smaller, electrogenic and acetazolamidesensitive component also appears to exist. This latter component may become more prominent under conditions of cellular acidification.Abbreviations CA carbonic anhydrase - I SC short circuit current - NFM N-ethylmaleimide - PD transepithelial potential - SCFA short chain fatty acids  相似文献   

9.
Summary Porcine distal colon epithelium was mounted in Ussing chambers and bathed in plasma-like Ringer solution. Tissue conductances ranged from 10 to 15 mS and the short-circuit current (Isc) ranged from-15 to 220 A·cm-2. Variations in basal Isc resulted from differences in the amount of amiloride (10M mucosal addition)-sensitive Na+ absorption. Ion substitution and transepithelial flux experiments showed that 10 M amiloride produced a decrease in the mucosal-to-serosal (M-S) and net Na flux, and that this effect on Isc was independent of Cl- and HCO 3 - replacement. When the concentration of mucosal amiloride was increased from 10 to 100 M, little change in Isc was observed. However, increasing the concentration to 1 mM produced a further inhibition, which often reversed the polarity of the Isc. The decrease in Isc due to 1 mM amiloride was dependent on both Cl- and HCO 3 - , and was attributed to reductions in the M-S and net Na+ fluxes as well as the M-S unidirectional Cl- flux. Ion replacement experiments demonstrated that Cl- substitution reduced the M-S and net Na fluxes, while replacement of HCO 3 - with HEPES abolished net Cl- absorption by reducing the M-S unidirectional Cl- flux. From these data it can be concluded that: (1) Na+ absorption is mediated by two distinct amiloride-sensitive transport pathways, and (2) Cl- absorption is completely HCO 3 - -dependent (presumably mediated by Cl-/HCO 3 - exchange) and occurs independently of Na+ absorption.Abbreviations Gt tissue conductance - HEPES tris (hydroxymethyl) aminomethane - (tris) N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Isc short-circuit current - Jr residual flux - M-S mucosal-to-scrosal - S-M serosal-to-mucosal - TTX tetrodotoxin  相似文献   

10.
Summary We studied the influence of mucosal Ba2+ ions on the recently described (Zeiske & Van Driessche, 1979a, J. Membrane Biol. 47:77) transepithelial, mucosa towards serosa directed K+ transport in the skin ofRana temporaria. The transport parametersG (conductance), PD (potential difference),I sc (short-circuit current, K+ current), as well as the noise ofI sc were recorded. Addition of millimolar concentrations of Ba2+ to the mucosal K+-containing solution resulted in a sudden but quickly reversible drop inI sc.G andI sc decreased continuously with increasing Ba2+ concentration, (Ba2+) o . The apparent Michaelis constant of the inhibition by Ba2+ lies within the range 40–80 m. The apical membrane seems to remain permselective for K+ up to 500 m (Ba2+) o . Higher (Ba2+) o , however, appears to induce a shunt (PD falls,G increases). This finding made an accurate determination of the nature of the inhibition difficult but our results tend to suggest a K+-channel block by K+–Ba2+ competition. In the presence of Ba2+, the power spectrum of the K+ current shows a second Lorentzian component in the low-frequency range, in addition to the high-frequency Lorentzian caused by spontaneous K+-channel fluctuations (Van Driessche & Zeiske, 1980). Both Lorentzian components are only present with mucosal K+ and can be depressed by addition of Cs+ ions, thus indicating that Ba2+ ions induce K+-channel fluctuations. The dependence of the parameters of the induced Lorentzian on (Ba2+) o , shows a rise in the plateau values to a maximum around 60 m (Ba2+) o , followed by a sharp and progressive decrease to very low values. The corner frequency which reflects the rate of the Ba2+-induced fluctuations, however, increases quasi-linearly up to 1mm (Ba2+) o with a tendency to saturate at higher (Ba2+) o . Based on a three-state model for the K+ channel (having one open state, one closed by the spontaneous fluctuation and one blocked by Ba2+) computer calculations compared favorably with our results. The effect of Ba2+ could be explained by assuming reversible binding at the outer side of the apical K+ channel, thereby blocking the open channel in competition with K+. The association-dissociation of Ba2+ at its receptor site is thought to cause a chopping of the K+ current, resulting in modulated current fluctuations.  相似文献   

11.
Summary Single gill lamellae from posterior gills of Chinese crabs (Eriocheir sinensis) were isolated, separated into halves and mounted in a modified Ussing chamber. Area-related short-circuit current (Isc) and conductance (Gtot) of this preparation were measured. Epithelial cells were impaled with microelectrodes through the basolateral membrane and cellular potentials (Vi under open- and Vsc under short-circuit conditions) as well as the voltage divider ratios (Fi, Fo) were determined.With NaCl salines on both sides an outside positive PDte (22±2 mV) and an Isc (-64±13 A·cm-2) with a polarity corresponding to an uptake of negative charges (inward negative) were obtained. Trough-like potential profiles were recorded across the preparation under open- as well as short-circuit conditions (Vo=-101±5 mV, external bath as reference; Vi=-78±2 mV, internal bath as reference; Vsc=-80±2 mV, extracellular space as reference). The voltage divider ratios of the external (apical membrane plus cuticle) and internal (basolateral membrane) barrier were Fo=0.92±0.01 and Fi=0.08±0.01, respectively. To investigate a Cl--related contribution to the above parameters, Na+-free solutions in the external bath (basolateral NaCl-saline) were used. Inward negative Isc under these conditions almost completely depended on external Cl-. Elimination of Cl- in the external bath reversed Isc, and Gtot decreased substantially. Concomitantly, Vsc depolarised and Fo increased. Cl--dependent current and conductance showed saturation kinetics with increasing external [Cl-]. Addition of 20 mmol·1-1 thiocyanate to the external bath had similar, although less pronounced, effects as Cl- substitution. Equally, external SITS (1 mmol·1-1) inhibited the current and, concomitantly, Gtot decreased substantially. Addition of 1 mmol·1-1 acetazolamide to, and omission of NaHCO3 from, the basolateral bath resulted in a decrease of Isc while Gtot remained unchanged. The Cl--channel blocker DPC inhibited Isc almost completely when added to the basolateral saline, whereas Gtot decreased moderately; however, Vsc depolarised without significant change of Fi. Ouabain had no influence on Isc and Gtot. Increasing the basolateral [K+] resulted in a decrease in Isc, while Gtot was not affected. At the same time Vsc largely depolarised and Fi decreased. Addition of the K+-channel blocker Ba++ (5 mmol·1-1) to the basolateral solution resulted in a two-step alteration of the transepithelial (Isc, Gtot) and cellular (Vsc, Fi) parameters. The results are discussed with regard to (i) the mechanisms responsible for active transbranchial Cl- uptake, and (ii) the technical improvement of being able to perform transport studies with crab gill preparations in an Ussing chamber.Abbreviations DMSO dimethylsulfoxide - DPC diphenylamine-2-carboxylate - F o, i voltage divider ratio for external (o) and internal (i) barrier, respectively - G Cl conductance related to the external [Cl-] - G tot total tissue conductance - I Cl short-circuit current related to the external [Cl-] - I sc short-circuit current - PD te transepithelial potential difference - R ME resistance of the microelectrode - SITS 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid - V o, i open-circuit voltage across the external (o) and internal (i) barrier, respectively - V sc intracellular potential under short-circuit conditions  相似文献   

12.
Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

13.
Summary By in vitro experiments on rabbit bladder, we reassessed the traditional view that mammalian urinary bladder lacks ion transport mechanisms. Since the ratio of actual-to-nominal membrane area in folded epithelia is variable and hard to estimate, we normalized membrane properties to apical membrane capacitance rather than to nominal area (probably 1 F 1 cm2 actual area). A new mounting technique that virtually eliminates edge damage yielded resistances up to 78,000 F for rabbit bladder, and resistances for amphibian skin and bladder much higher than those usually reported. This technique made it possible to observe a transport-related conductance pathway, and a close correlation between transepithelial conductance (G) and short-circuit current (I sc) in these tight epithelia.G andI sc were increased by mucosal (Na+) [I sc0 when (Na+)0], aldosterone, serosal (HCO 3 ) and high mucosal (H+); were decreased by amiloride, mucosal (Ca++), ouabain, metabolic inhibitors and serosal (H+); and were unaffected by (Cl) and little affected by antidiuretic hormone (ADH). Physiological variation in the rabbits' dietary Na+ intake caused variations in bladderG andI sc similar to those caused by the expectedin vivo changes in aldosterone levels. The relation betweenG andI sc was the same whether defined by diet changes, natural variation among individual rabbits, or most of the above agents. A method was developed for separately resolving conductances of junctions, basolateral cell membrane, and apical cell membrane from thisG–I sc relation. Net Na+ flux equalledI sc. Net Cl flux was zero on short circuit and equalled only 25% of net Na+ flux in open circuit. Bladder membrane fragments contained a Na+–K+-activated, ouabain-inhibited ATPase. The physiological significance of Na+ absorption against steep gradients in rabbit bladder may be to maintain kidney-generated ion gradients during bladder storage of urine, especially when the animal is Na+-depleted.  相似文献   

14.
Summary Na, K-ATPase function was studied in order to evaluate the mechanism of increased colonic Na+ transport during early postnatal development. The maximum Na+-pumping activity that was represented by the equivalent short-circuit current after addition of nystatin (I sc N ) did not change during postnatal life or after adrenalectomy performed in 16-day-old rats.I sc N was entirely inhibited by ouabain; the inhibitory constant was 0.1mm in 10-day-old (young) and 0.4mm in 90-day-old (adult) rats. The affinity of the Na, K pump for Na+ was higher in young (11mm) than in adult animals (19mm). The Na, K-ATPase activity (measured after unmasking of latent activity by treatment with sodium dodecylsulfate) increased during development and was also not influenced by adrenalectomy of 16-day-old rats. The inhibitory constant for ouabain (K I ) was not changed during development (0.1–0.3mm). Specific [3H]ouabain binding to isolated colonocytes increased during development (19 and 82 pmol/mg protein), the dissociation constant (K D ) was 8 and 21 m in young and adult rats, respectively. The Na+ turnover rate per single Na, K pump, which was calculated fromI sc N and estimated density of binding sites per cm2 of tissue was 500 in adult and 6400 Na+/min·site in young rats. These data indicate that the very high Na+ transport during early postnatal life reflects an elevated turnover rate and increased affinity for Na+ of a single isoform of the Na, K pump. The development of Na+ extrusion across the basolateral membrane is not directly regulated by corticosteroids.  相似文献   

15.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V t)and the transepithelial resistance (R t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO 3 -free solutions. Under control conditions, pH iwas 7.01±0.04 (n=18), V twas 9.1±0.5 mV, R t16.7±0.09 cm2, and I sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate caused a biphasic effect involving an initial acidification of pH i, increase in V tand I sc and decrease in R tand a subsequent alkalinization of pH i, decrease of V tand increase of R t. Removal of propionate caused a transient effect involving an alkalinization of pH i, a decrease of V tand I sc and an increase in R t. pH iin the presence of propionate exceeded pH iunder control conditions. Effects of propionate on V t, R tand I sc were significantly larger when propionate was applied to the basolateral side rather than to the apical side of the epithelium. The pH i-sensitivityof I sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH i7.6. Acidification of the extracellular pH (pH o)caused an increase of V tand I sc and a decrease of R tmost likely due to acidification of pH i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH osensitivity of I sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH iand pH oand that vestibular dark cells contain propionate uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I sK)in the apical membrane. Whether the effect of pH ion the I sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212.  相似文献   

16.
Summary The amphibian antidiuretic hormone, arginine vasotocin, stimulated osmotic water flow across isolated skin from the pelvic but not the pectoral skin of the toad, Bufo woodhouseii. Changes in the apical membrane capacitance were not observed for either region of the skin following treatment with arginine vasotocin when there was an osmotic gradient across the tissue. In the absence of an osmotic pressure gradient, the apical membrane capacitance of the pelvic skin increased from 2.8±0.5 to 3.3±0.6 F · cm-2 after treatment with 5 · 10-8 M arginine vasotocin. Under these conditions, apical membrane capacitance of the pectoral skin was 1.8±0.1 F · cm-2 and did not change significantly after arginine vasotocin treatment. The amiloride-sensitive short-circuit current across the pelvic skin was stimulated by arginine vasotocin as was the density of channels in the apical membrane as determined by fluctuation analysis. Values for channel density in the pelvic skin also correlated with apical membrane capacitance and increased from 90 to 273 channels per m2 of estimated membrane area following arginine vasotocin treatment. In the pectoral skin the stimulation of short-circuit current following arginine vasotocin treatment was small and an increase in channel density could not be demonstrated. The current through single Na+ channels in both regions of the skin did not different either before or after arginine vasotocin treatment.Abbreviations A amiloride - ADH antidiuretic hormone - AVT arginine vasotocin - C capacitance - C a capacitance of apical membrane - f c corner frequency - i single-channel current - osmotic water flow - IMP intramembrane particles - I sc short-circuit current - amiloride-sensitive short-circuit current - M channel density - P o probability of a channel being open - R channel receptor - R a apical resistance - R p paracellular resistance  相似文献   

17.
Summary Effect of amiloride, ouabain, and Ba++ on the nonsteady-state Na–K pump flux and short-circuit current in isolated frog skin epithelia.The active Na+ transport across isolated frog skin occurs in two steps: passive diffusion across the apical membrane of the cells followed by an active extrusion from the cells via the Na+–K+ pump at the basolateral membrane. In isolated epithelia with a very small Na+ efflux, the appearing Na+-flux in the basolateral solution is equal to the rate of the pump, whereas the short-circuit current (SCC) is equal to the active transepithelial Na+ transport. It was found that blocking the passive diffusion of Na+ across the apical membrane (addition of amiloride) resulted in an instantaneous inhibition of the SCC (the transepithelial Na+ transport, whereas the appearing flux (the rate of the Na+–K+ pump) decreased with a halftime of 1.9 min. Addition of the Na+–K+ pump inhibitor ouabain (0.1mm) resulted in a faster and bigger inhibition of the appearing flux than of the SCC. Thus, by simultaneous measurement of the SCC and the appearing Na+ flux one can elucidate whether an inhibitor exerts its effect by inhibiting the pump or by decreasing the passive permeability. Addition of the K+ channel inhibitor Ba++, in a concentration which gave maximum inhibition of the SCC, had no effect on the appearing flux (the rate of the Na–K pump) in the first 2 min, although the inhibition of the SCC was already at its maximum.It is argued that in the short period, where the Ba++-induced inhibition of SCC is at its maximum and the appearing flux in unchanged, the decrease in the SCC (SCC) is equal to the net K+ flux via the Na+–K+ pump, and the coupling ratio () of the Na+–K+ pump can be calculated from the following equation =SCC t=0/SCC where SCC t=0 is the steady-state SCC before the addition of Ba++.  相似文献   

18.
Summary Apical Na+ entry into frog skin epithelium is widely presumed to be electrodiffusive in nature, as for other tight epithelia. However, in contrast to rabbit descending colon andNecturus urinary bladder, the constant field equation has been reported to fit the apical sodium current (N Na)-membrane potential (mc) relationship over only a narrow range of apical membrane potentials or to be inapplicable altogether. We have re-examined this issue by impaling split frog skins across the basolateral membrane and examining the current-voltage relationships at extremely early endpoints in time after initiating pulses of constant transepithelial voltage. In this study, the rapid transient responses in mc were completed within 0.5 to 3.5 msec. Using endpoints to 1 to 25 msec, the Goldman equation provided excellent fits of the data over large ranges in apical potential of 300 to 420 mV, from approximately –200 to about +145 mV (cell relative to mucosa). Split skins were also studied when superfused with high serosal K+ in order to determine whether theI Na-mc relationship could be generated purely by transepithelial measurements. Under these conditions, the basolateral membrane potential was found to be –10±3 mV (cell relative to serosa, mean±se), the basolateral fractional resistance was greater than zero, and the transepithelial current was markedly and reversibly reduced. For these reasons, use of high serosal K+ is considered inadvisable for determining theI Na-mc relationship, at least in those tissues (such as frog skin) where more direct measurements are technically feasible. Analysis of theI Na-mc relationships under baseline conditions provided estimates of intracellular Na+ concentration and of apical Na+ permeability of 9 to 14mm and of 3 × 10–7 cm · sec–1, respectively, in reasonable agreement with estimates obtained by different techniques.  相似文献   

19.
Cholinergic stimulation of chloride secretion involves the activation of a basolateral membrane potassium conductance, which maintains the electrical gradient favoring apical Cl efflux and allows K to recycle at the basolateral membrane. We have used transepithelial short-circuit current (I SC), fluorescence imaging, and patch clamp studies to identify and characterize the K channel that mediates this response in T84 cells. Carbachol had little effect on I SC when added alone but produced large, transient currents if added to monolayers prestimulated with cAMP. cAMP also enhanced the subsequent I SC response to calcium ionophores. Carbachol (100 m) transiently elevated intracellular free calcium ([Ca2+] i ) by 3-fold in confluent cells cultured on glass coverslips with a time course resembling the I sc response of confluent monolayers that had been grown on porous supports. In parallel patch clamp experiments, carbachol activated an inwardly rectifying potassium channel on the basolateral aspect of polarized monolayers which had been dissected from porous culture supports. The same channel was transiently activated on the surface of subconfluent monolayers during stimulation by carbachol. Activation was more prolonged when cells were exposed to calcium ionophores. The conductance of the inward rectifier in cell-attached patches was 55 pS near the resting membrane potential (–54 mV) with pipette solution containing 150 mm KCl (37°C). This rectification persisted when patches were bathed in symmetrical 150 mm KCl solutions. The selectivity sequence was 1 K > 0.88 Rb > 0.18 Na Cs based on permeability ratios under bi-ionic conditions. The channel exhibited fast block by external sodium ions, was weakly inhibited by external TEA, was relatively insensitive to charybdotoxin, kaliotoxin, 4-aminopyridine and quinidine, and was unaffected by external 10 mm barium. It is referred to as the KBIC channel based on its most distinctive properties (Ba-insensitive, inwardly rectifying, Ca-activated). Like single KBIC channels, the carbachol-stimulated I SC was relatively insensitive to several blockers on the basolateral side and was unaffected by barium. These comparisons between the properties of the macroscopic current and single channels suggest that the KBIC channel mediates basolateral membrane K conductance in T84 cell monolayers during stimulation by cholinergic secretagogues.We thank Dr. Marcel Crest (Laboratoire de Neurobiologie, CNRS, Marseille) for providing a sample of kaliotoxin. This work was supported by the Canadian Cystic Fibrosis Foundation and the Respiratory Health Network of Centres of Excellence. J.W.H. is a Chercheur-Boursier of the Fonds de la recherche en santé du Québec.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号