首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our purpose was to determine whether changes in myocardial capillarity underlie the exercise training-induced increases in coronary transport capacity previously observed in dogs (J. Appl. Physiol. 58: 468-476, 1985). The approach was to measure capillary diffusion capacity (PS) in working hearts and then measure capillary numerical density (CD), capillary surface area density (CSA), and capillary volume density (CV) in specimens from perfused-fixed hearts. Eight dogs (20-30 kg) were exercise trained (ET) for 12-18 wk and compared with a group of seven control dogs. PS for 51Cr-labeled ethylenediaminetetraacetic acid was determined during maximal adenosine coronary vasodilation with perfusion pressures equal to 100 mmHg in both groups. The trained dogs' maximal PS averaged 58 +/- 10 ml.min-1.100 g-1, which was significantly greater than the control value (31 +/- 6). Maximal PS was linearly related to CV (r = 0.61) and CSA (r = 0.78) in the ET group. However, there was no difference between control and trained average left ventricular CD, CSA, CV, or intercapillary distance. The data indicate that although coronary blood flow capacity and capillary transport capacity may be improved in exercise-trained dog hearts, these changes are not the result of an increase in myocardial capillarity. Rather, the increased maximal PS appears to be due to changes in the determinants of capillary blood flow and/or the relationship between capillary area available for exchange and capillary perfusion.  相似文献   

2.
Effects of exercise training on coronary transport capacity   总被引:3,自引:0,他引:3  
Coronary transport capacity was estimated in eight sedentary control and eight exercise-trained anesthetized dogs by determining the differences between base line and the highest coronary blood flow and permeability-surface area product (PS) obtained during maximal adenosine vasodilation with coronary perfusion pressure constant. The anterior descending branch of the left coronary artery was cannulated and pump-perfused under constant-pressure conditions (approximately equal to 100 Torr) while aortic, central venous, and coronary perfusion pressures, heart rate, electrocardiogram, and coronary flow were monitored. Myocardial extraction and PS of 51Cr-labeled ethylenediaminetetraacetic acid were determined with the single-injection indicator-diffusion method. The efficacy of the 16 +/- 1 wk exercise training program was shown by significant increases in the succinate dehydrogenase activities of the gastrocnemius, gluteus medialis, and long head of triceps brachii muscles. There were no differences between control and trained dogs for either resting coronary blood flow or PS. During maximal vasodilation with adenosine, the trained dogs had significantly lower perfusion pressures with constant flow and, with constant-pressure vasodilation, greater coronary blood flow and PS. It is concluded that exercise training in dogs induces an increased coronary transport capacity that includes increases in coronary blood flow capacity (26% of control) and capillary diffusion capacity (82% of control).  相似文献   

3.
In 11 anesthetized pigs, the left anterior descending coronary artery (LAD) was cannulated and pump perfused with blood before and during maximum adenosine vasodilation. For LAD plasma flows (F) ranging from 0.42 to 3.6 ml.min-1.g perfused tissue-1, we injected radiolabeled microspheres to measure heterogeneity and used the multiple indicator-dilution method to measure permeability-surface area product (PS) for EDTA. Heterogeneity of flow from the LAD was expressed as relative dispersion (RD) = standard deviation of flow/mean flow. Values of RD, corrected for tissue sample size using fractal theory, ranged from 13 to 87%, approaching 16-35% at high F. We developed a "variable-recruitment model" of regional heterogeneous capillary transport to correct PS for flow heterogeneity and capillary surface area recruitment. Values of PS ranged from 0.14 to 0.96 ml.min-1.g-1. Accounting for heterogeneity increased PS values by 0-18% compared with homogeneous values. Results revealed PS to be proportional to flow up to F = 1.5-2.1 ml.min-1.g-1 and then was constant at higher flows. The initial increase of PS with F may be due to capillary recruitment. When full recruitment is reached, PS becomes independent of F. We conclude that flow heterogeneity is significant but not readily predictable in the pig myocardium and that the use of microspheres to correct indicator-dilution data for flow heterogeneity improves the interpretation of multiple-tracer studies, particularly when tracers are used to study interventions that may alter flow distribution.  相似文献   

4.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

5.
The present study was carried out 1) to compare blood flow in the costal and crural regions of the equine diaphragm during quiet breathing at rest and during graded exercise and 2) to determine the fraction of cardiac output needed to perfuse the diaphragm during near-maximal exercise. By the use of radionuclide-labeled 15-micron-diam microspheres injected into the left atrium, diaphragmatic and intercostal muscle blood flow was studied in 10 healthy ponies at rest and during three levels of exercise (moderate: 12 mph, heavy: 15 mph, and near-maximal: 19-20 mph) performed on a treadmill. At rest, in eucapnic ponies, costal (13 +/- 3 ml.min-1.100 g-1) and crural (13 +/- 2 ml.min-1.100 g-1) phrenic blood flows were similar, but the costal diaphragm received a much larger percentage of cardiac output (0.51 +/- 0.12% vs. 0.15 +/- 0.03% for crural diaphragm). Intercostal muscle perfusion at rest was significantly less than in either phrenic region. Graded exercise resulted in significant progressive increments in perfusion to these tissues. Although during exercise, crural diaphragmatic blood flow was not different from intercostal muscle blood flow, these values remained significantly less (P less than 0.01) than in the costal diaphragm. At moderate, heavy, and near-maximal exercise, costal diaphragmatic blood flow (123 +/- 12, 190 +/- 12, and 245 +/- 18 ml.min-1.100 g-1) was 143%, 162%, and 162%, respectively, of that for the crural diaphragm (86 +/- 10, 117 +/- 8, and 151 +/- 14 ml.min-1.100 g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to assess the influence of regular voluntary exercise in pregnant normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats on 1) uteroplacental perfusion and mean arterial pressure in the resting conscious condition and 2) fetal number, fetal weight, and number of fetal resorptions. WKYs and SHRs were randomly assigned to standard cages [CWKY (n = 10); CSHR (n = 6)] or cages with activity wheels [EWKY (n = 7); ESHR (n = 8)]. EWKYs and ESHRs exercised for 12 wk, and then all rats were bred and experiments were conducted on gestational day 17. Resting blood flow (microspheres), heart rate (HR), and mean arterial pressure (Pa) were measured. No significant difference was found in Pa, HR, uterine blood flow (ESHRs 52 +/- 8 ml.min-1.100 g-1; CSHRs 28 +/- 6 ml.min-1.100 g-1), or maternal placental blood flow (ESHRs, 122 +/- 31 ml.min-1.100 g-1; CSHRs 78 +/- 21 ml.min-1.100 g-1) among the groups. Exercise altered the relationship between maternal placental and uterine blood flow and Pa in the SHR; SHRs with lower Pa maintained higher placental and uterine blood flow after training. Before gestation ESHRs ran on average more kilometers per week than EWKYs (43 +/- 3 vs. 34 +/- 4), but during gestation ESHRs averaged fewer kilometers per week than EWKYs (16 +/- 4 vs. 22 +/- 4). Succinate dehydrogenase activity was higher in the white vastus lateralis (1.02 +/- 0.2 mumol cytochrome c reduced.min-1.g wet wt-1) and vastus intermedius (3.1 +/- 0.5 mumol cytochrome c reduced.min-1.g wet wt-1) muscles of ESHRs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to determine whether cardiac biochemical adaptations are induced by chronic exercise training (ET) of miniature swine. Female Yucatan miniature swine were trained on a treadmill or were cage confined (C) for 16-22 wk. After training, the ET pigs had increased exercise tolerance, lower heart rates during exercise at submaximal intensities, moderate cardiac hypertrophy, increased coronary blood flow capacity, and increased oxidative capacity of skeletal muscle. Myosin from both the C and ET hearts was 100% of the V3 isozyme, and there were no differences between the myosin adenosine triphosphatase (ATPase) or myofibrillar ATPase activities of C and ET hearts. Also, the sarcoplasmic reticulum Ca(2+)-ATPase activity and Na(+)-Ca2+ exchange activity of sarcolemmal vesicles were the same in cardiac muscle of C and ET hearts. Finally, the glycolytic and oxidative capacity of ET cardiac muscle was not different from control, since phosphofructokinase, citrate synthase, and 3-hydroxyacyl-CoA dehydrogenase activities were the same in cardiac tissue from ET and C pigs. We conclude that endurance exercise training does not provide sufficient stress on the heart of a large mammal to induce changes in any of the three major cardiac biochemical systems of the porcine myocardium: the contractile system, the Ca2+ regulatory systems, or the metabolic system.  相似文献   

8.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The systemic blood flow to the airways of the left lung was determined by the radioactive microsphere technique before and 17 h after smoke inhalation in six conscious sheep (smoke group) and six sheep insufflated with air alone (sham group). Smoke inhalation caused a sixfold increase in systemic blood flow to the lower trachea (baseline 10.6 +/- 1.7 vs. injury 60.9 +/- 16.1 ml.min-1.100 g-1) and an 11- to 14-fold increase to the intrapulmonary central airways (baseline range 9.5 +/- 1.9 to 13.5 +/- 3.7 ml.min-1.100 g-1 vs. injury 104.6 +/- 32.2 to 187.3 +/- 83.6 ml.min-1.100 g-1). There was a trend for this hyperemic response to be greater as airway diameter decreased from the trachea to 2-mm-diam central airways. In airways smaller than 2 mm, the hyperemic response appeared to diminish. The total systemic blood flow to whole lung is predominantly to small peripheral airways and showed no significant increase from its baseline level of 17.5 +/- 3.7 ml.min-1.100 g-1 in the lung homogenate. Occlusion of the bronchoesophageal artery decreased central airway blood flow 60-80% and peripheral airway blood flow 40-60% in both the sham and the smoke groups.  相似文献   

10.
We investigated the effect of increasing hemoglobin- (Hb) O2 affinity on muscle maximal O2 uptake (VO2max) while muscle blood flow, [Hb], HbO2 saturation, and thus O2 delivery (muscle blood flow X arterial O2 content) to the working muscle were kept unchanged from control. VO2max was measured in isolated in situ canine gastrocnemius working maximally (isometric tetanic contractions). The muscles were pump perfused, in alternating order, with either normal blood [O2 half-saturation pressure of hemoglobin (P50) = 32.1 +/- 0.5 (SE) Torr] or blood from dogs that had been fed sodium cyanate (150 mg.kg-1.day-1) for 3-4 wk (P50 = 23.2 +/- 0.9). In both conditions (n = 8) arterial PO2 was set at approximately 200 Torr to fully saturate arterial blood, which thereby produced the same arterial O2 contents, and muscle blood flow was set at 106 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. VO2max was 11.8 +/- 1.0 ml.min-1.100 g-1 when perfused with the normal blood (control) and was reduced by 17% to 9.8 +/- 0.7 ml.min-1.100 g-1 when perfused with the low-P50 blood (P less than 0.01). Mean muscle effluent venous PO2 was also significantly less (26 +/- 3 vs. 30 +/- 2 Torr; P less than 0.01) in the low-P50 condition, as was an estimate of the capillary driving pressure for O2 diffusion, the mean capillary PO2 (45 +/- 3 vs. 51 +/- 2 Torr). However, the estimated muscle O2 diffusing capacity was not different between conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In experiments on cats the perfusion (at a constant flow and controlled venous outflow) of haemodynamic isolated liver was carried out. It was shown that at the levels of venous pressure in the liver 0, 2, and 4 mm Hg, the lymph flow (22.8 +/- 3.5, 41.8 +/- 5.7 and 57.6 +/- 8.6 mkl.min-1.100 g-1, respectively) was depended on the value of hydrostatic pressures in the sinusoids (1.4 +/- 0.1, 3.3 +/- 0.1, and 5.4 +/- 0.1 mm Hg, respectively) and did not depend on the value of sinusoidal filtration coefficient (0.421 +/- 0.029, 0.473 +/- 0.036, and 0.474 +/- 0.034 ml.min-1.mm Hg-1.100 g-1, respectively).  相似文献   

12.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study evaluated the effect of ischemia-reperfusion (I-R) on pulmonary capillary permeability in isolated rabbit lungs and the roles of xanthine oxidase (XO), aldehyde oxidase (AO), and neutrophils (PMN) in producing this lung injury. Effects of XO and AO were studied by inactivation with a tungsten-enriched diet (0.7 g/kg) and inhibition of XO by allopurinol (100 microM) or AO by menadione (3.5 microM). PMN effects were studied by preventing endothelial adhesion with the monoclonal antibody IB4 (10 microM). Vascular permeability was evaluated by determining the capillary filtration coefficient (Kf,c) measured before and after I-R in all experimental conditions. Reperfusion after 2 h of ischemia significantly increased pulmonary capillary permeability (Kf,c changed from 0.096 +/- 0.014 to 0.213 +/- 0.025 ml.min-1. cmH2O-1.100 g-1), and this increase was blocked by the addition of catalase (50,000 U) at reperfusion (baseline Kf,c was 0.125 +/- 0.023 and 0.116 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). XO inactivation with the tungsten-supplemented diet and XO inhibition with allopurinol prevented the Kf,c increase observed after I-R (0.183 +/- 0.030 to 0.185 +/- 0.033 and 0.126 +/- 0.018 to 0.103 +/- 0.005 ml.min-1.cmH2O-1.100 g-1). Inhibition of AO had no effect on I-R injury (Kf,c 0.108 +/- 0.011 to 0.167 +/- 0.014 ml.min-1.cmH2O-1.100 g-1). Preventing PMN adhesion resulted in significant attenuation of the change in Kf,c associated with I-R (0.112 +/- 0.032 to 0.090 +/- 0.065 ml.min-1.cmH2O-1.100 g-1). We conclude that XO and PMN adherence, but not AO, are involved in the increased capillary permeability associated with I-R.  相似文献   

14.
In the present study we investigated the effects of carboxyhemoglobinemia (HbCO) on muscle maximal O2 uptake (VO2max) during hypoxia. O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 12) working maximally (isometric twitch contractions at 5 Hz for 3 min). The muscles were pump perfused at identical blood flow, arterial PO2 (PaO2) and total hemoglobin concentration [( Hb]) with blood containing either 1% (control) or 30% HbCO. In both conditions PaO2 was set at 30 Torr, which produced the same arterial O2 contents, and muscle blood flow was set at 120 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. To minimize CO diffusion into the tissues, perfusion with HbCO-containing blood was limited to the time of the contraction period. VO2max was 8.8 +/- 0.6 (SE) ml.min-1.100 g-1 (n = 12) with hypoxemia alone and was reduced by 26% to 6.5 +/- 0.4 ml.min-1.100 g-1 when HbCO was present (n = 12; P less than 0.01). In both cases, mean muscle effluent venous PO2 (PVO2) was the same (16 +/- 1 Torr). Because PaO2 and PVO2 were the same for both conditions, the mean capillary PO2 (estimate of mean O2 driving pressure) was probably not much different for the two conditions, even though the O2 dissociation curve was shifted to the left by HbCO. Consequently the blood-to-mitochondria O2 diffusive conductance was likely reduced by HbCO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Left ventricular dysfunction in swine with a recent myocardial infarction (MI) is associated with neurohumoral activation, including increased catecholamines and endothelin (ET). Although the increase in ET may serve to maintain blood pressure and, hence, perfusion of essential organs such as the heart and brain, it could also compromise myocardial perfusion by evoking coronary vasoconstriction. In the present study, we tested the hypothesis that endogenous ET contributes to perturbations in myocardial O2 balance during exercise in remodeled myocardium of swine with a recent MI. For this purpose, 26 chronically instrumented swine (10 with and 16 without MI) were studied at rest and while running on a treadmill at 1-4 km/h. After MI, plasma ET increased from 3.2 +/- 0.4 to 4.9 +/- 0.3 pM (P < 0.05). In normal swine, blockade of ETA (by EMD-122946) or ETA-ETB (by tezosentan) receptors resulted in an increase in coronary venous PO2, i.e., coronary vasodilation at rest, which decreased during exercise. In contrast, neither ETA nor ETA-ETB receptor blockade resulted in coronary vasodilation in swine with MI. Coronary vasoconstriction to intravenous ET-1 infusion in awake resting swine was blunted after MI. To investigate whether factors released by cardiac myocytes contributed to decreased vascular responsiveness to ET, we performed ET-1 dose-response curves in isolated coronary arterioles (70-200 microm). Vasoconstriction to ET-1 in isolated arterioles from MI swine was enhanced. In conclusion, the vasoconstrictor influence of endogenous as well as exogenous ET on coronary circulation in vivo is reduced. Because the response of isolated coronary arterioles to ET is increased after MI, the reduced vasoconstrictor influence in vivo suggests modulation of ET receptor sensitivity by cardiac myocytes, which may serve to maintain adequate myocardial perfusion.  相似文献   

16.
The effects of infusion of arginine vasopressin (20 mU.kg-1.min-1) on coronary blood flow and the proportion of the coronary microvasculature perfused was studied in rabbit myocardium. Fluorescein isothiocyanate--dextran was injected into anesthetized open-chest rabbits to identify the perfused vessels and an alkaline phosphatase stain was employed to locate the total microvasculature. Coronary blood flow (radioactive microspheres) was studied in separate groups of rabbits. Vasopressin infusion caused bradycardia (243 +/- 19 to 165 +/- 22 beats/min, mean +/- SD) and an increase in mean blood pressure (92 +/- 18 to 104 +/- 12 mmHg) (1 mmHg = 133.32 Pa). Coronary blood flow decreased significantly with vasopressin from 209 +/- 68 to 97 +/- 36 mL.min-1.100 g-1. The proportion of the arteriolar bed per millimeter squared perfused decreased significantly after vasopressin from 54 +/- 13 to 44 +/- 21%, while the percentage of capillaries per millimeter squared increased significantly from 57 +/- 6 to 67 +/- 11%. There were no subepicardial versus subendocardial differences in any measured parameter. Thus, both coronary blood flow and the proportion of the arteriolar bed perfused decreased with vasopressin. However, compensation occurred in that the proportion of capillaries perfused increased. This indicated an independent level of control of the coronary arteriolar and capillary beds. These microvascular changes may help to maintain oxygen supply-demand balance with vasopressin in the heart.  相似文献   

17.
The present study investigates the integrity of the blood-brain barrier to H+ or HCO3- during acute plasma acidosis in 35 newborn piglets anesthetized with pentobarbital sodium. Cerebrospinal fluid acid-base balance, cerebral blood flow (CBF), and cerebral oxygenation were measured after infusion of HCl (0.6 N, 0.191-0.388 ml/min) for a period of 1 h at a constant arterial PCO2 of 35-40 Torr. HCl infusion resulted in decreased arterial pH from 7.38 +/- 0.01 to 7.00 +/- 0.02 (P less than 0.01). CBF measured by the tracer microsphere technique was decreased by 12% from 69 +/- 6 to 61 +/- 4 ml.min-1.100 g-1 (P less than 0.05). Infusion of 0.6 N NaCl as a hypertonic control had no effect on CBF. Cerebral metabolic rate for O2 and O2 extraction was not significantly changed from control (3.83 +/- 0.20 ml.min-1.100 g-1 and 5.7 +/- 0.6 ml/100 ml, respectively) during acid infusion. Cerebral venous PO2 was increased from 41.6 +/- 2.1 to 53.8 +/- 4.0 Torr by HCl infusion (P less than 0.02) associated with a shift in O2-hemoglobin affinity of blood in vivo from 38 +/- 2 to 50 +/- 1 Torr. Cisternal cerebrospinal fluid pH decreased from 7.336 +/- 0.014 to 7.226 +/- 0.027 (P less than 0.005), but cerebrospinal fluid HCO3- concentration was not changed from control (25.4 +/- 1.0 meq/l). These data suggest that there is a functional blood-brain barrier in newborn piglets, that is relatively impermeable to HCO3- or H+ and maintains cerebral perivascular pH constant in the face of acute severe arterial acidosis. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The goal of the current study was to determine the effects of cAMP-mediated coronary reactivity in conscious pigs with stunned myocardium induced by 1.5 h coronary stenosis (CS) and 12 h coronary artery reperfusion (CAR). Domestic swine (n = 5) were chronically instrumented with a coronary artery blood flow (CBF) probe, hydraulic occluder, left ventricular pressure gauge, wall-thickening crystals in the ischemic and nonischemic zones, and a coronary sinus catheter. The hydraulic occluder was inflated to induce a CS with a stable 38 +/- 1% reduction in CBF for 1.5 h. Before flow reduction and during CAR, cAMP-induced coronary vasodilation was investigated by forskolin (20 nmol. kg(-1). min(-1)). Enhanced CBF responses [+62 +/- 9%, P < 0.05, compared with pre-CS (+37 +/- 3%)] were observed for forskolin at 12 h after CAR as well as for bradykinin and reactive hyperemia. With the use of a similar protocol during systemic nitric oxide (NO) synthase inhibition with N(omega)-nitro-L-arginine (30 mg. kg(-1). day(-1) for 3 days), the enhanced CBF responses to forskolin, bradykinin, and reactive hyperemia were not observed after CS. Isolated microvessel preparations from pigs (n = 8) also demonstrated enhanced NO production to direct stimulation of adenylyl cyclase with forskolin (+71 +/- 12%) or NKH-477 (+60 +/- 10%) and administration of 8-bromo-cAMP (+74 +/- 13%), which were abolished by protein kinase A or NO synthase inhibition. These data indicate that cAMP stimulation elicits direct coronary vasodilation and that this action is amplified in the presence of sustained myocardial stunning after recovery from CS. This enhanced cAMP coronary vasodilation is mediated by an NO mechanism that may be involved in myocardial protection from ischemic injury.  相似文献   

19.
The effect of leukocyte depletion on acute lung injury produced by intravenous or intratracheal phorbol myristate acetate (PMA) administration was studied in isolated perfused rat lungs. Vascular endothelial permeability was assessed by use of the capillary filtration coefficient (Kf,c). A predicted pulmonary capillary pressure (Ppc,p) was calculated from measurements of postcapillary resistances. These parameters were measured before and 90 min after the administration of PMA, either intratracheally or intravascularly. When blood elements were present both intratracheal and intravascular PMA caused an increased Kf,c [0.27 +/- 0.02 vs. 0.99 +/- 0.22 and 0.25 +/- 0.05 vs. 0.64 +/- 0.15 (SE) ml.min-1.cmH2O-1.100 g-1, respectively; P less than 0.05] and an increased Ppc,p (8.3 +/- 0.4 vs. 74.7 +/- 18.3 and 8.7 +/- 0.8 vs. 74.2 +/- 25.1 cmH2O, respectively; P less than 0.05). Removal of circulating leukocytes abolished the increased Kf,c when PMA was given intratracheally (0.35 +/- 0.06 vs. 0.23 +/- 0.07 ml.min-1.cmH2O-1.100 g-1) or intravascularly (0.39 +/- 0.07 vs. 0.33 +/- 0.07 ml.min-1.cmH2O-1.100 g-1). In the absence of neutrophils, Ppc,p slightly increased with intratracheal PMA, from 6.9 +/- 0.5 to 10.5 +/- 1.1 cmH2O (P less than 0.05), but was unchanged at 90 min with intravascular PMA. Depletion of circulating neutrophils with an antineutrophil serum failed to block the Kf,c change with intratracheal PMA (from 0.24 +/- 0.03 to 0.42 +/- 0.09 ml.min-1.cmH2O-1.100 g-1; P less than 0.05). Ppc,p also increased from 6.9 +/- 0.6 to 19.8 +/- 6.7 cmH2O (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Myocardial oxygen consumption (MVO2) and coronary blood flow (CBF) distribution were studied in 21 isolated, metabolically supported dog hearts. Measurements of MVO2 and CBF distribution were carried out in three different experimental conditions : empty beating heart (EBH), ventricular fibrillation (VF) and high potassium-induced cardiac arrest (CA). MVO2 was approximately the same in EBH and VF (4.09 +/- 0.77 and 4.28 +/- 0.68 ml O2 min-1 100 g-1 respectively), and significantly lower in the group with CA (2.40 +/- 0.18 ml O2 min-1 100 g-1, P less than 0.05). Total CBF showed no significant differences among the three groups (84 +/- 7 ml/min in EBH; 78 +/- 7 ml/min in VF and 83 +/- 7 ml/min in CA). Subendocardial CBF per unit of tissue mass was significantly lower in hearts with VF (0.43 +/- 0.01 ml/min-1 g-1, P less than 0.05) when tested against the other two groups of experiments (0.69 +/- 0.03 ml min-1 g-1 in EBH and 0.65 +/- +/- 0.04 ml min-1 g-1 in CA). This was also reflected in the endo/epi ratio, that was significantly lower in VF (1.41 +/- 0.07, P less than 0.05) with respect to the other two groups (2 +/- 0.09 in EBH and 2.21 +/- 0.07 in CA). From data presented here we can conclude that cardioplegia, even in absence of hypothermia, is a method that will assure myocardial protection providing : (1) a lower subendocardial MVO2; (2) a higher subendocardial CBF, which helps for a prompt recovery during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号