首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper describes the effects of formate on fermentative hydrogen production by Enterobacter aerogenes by way of batch culture. When 20 mM formate was added to pH 6.3 and pH 5.8 E. aerogenes glucose cultures (formate culture) at the beginning of cultivation, hydrogen evolution through both glucose consumption and decomposition of the extrinsic formate occurred together, while hydrogen evolution occurred only through glucose consumption in the control cultures. The hydrogen evolution rates in the formate cultures were faster than in the control cultures, although cell growth and glucose consumption rates in the formate cultures were slower than the control cultures’. The decomposition rate of the extrinsic formate in the pH 5.8 formate culture was faster than in the pH 6.3 fomiate culture. The hydrogen yield from glucose in the pH 6.3 formate culture increased due to the increasing amount of the nicotinamide adenine dinucleotide for hydrogen production.  相似文献   

2.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

3.
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.  相似文献   

4.
This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m3 in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications.  相似文献   

5.
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.  相似文献   

6.
Succinate is a core biochemical building block; optimizing succinate production from biomass by microbial fermentation is a focus of basic and applied biotechnology research. Lowering pH in anaerobic succinate fermentation culture is a cost-effective and environmentally friendly approach to reducing the use of sub-raw materials such as alkali, which are needed for neutralization. To evaluate the potential of bacteria-based succinate fermentation under weak acidic (pH <6.2) and anaerobic conditions, we characterized the anaerobic metabolism of Enterobacter aerogenes AJ110637, which rapidly assimilates glucose at pH 5.0. Based on the profile of anaerobic products, we constructed single-gene knockout mutants to eliminate the main anaerobic metabolic pathways involved in NADH re-oxidation. These single-gene knockout studies showed that the ethanol synthesis pathway serves as the dominant NADH re-oxidation pathway in this organism. To generate a metabolically engineered strain for succinate production, we eliminated ethanol formation and introduced a heterogeneous carboxylation enzyme, yielding E. aerogenes strain ΔadhE/PCK. The strain produced succinate from glucose with a 60.5 % yield (grams of succinate produced per gram of glucose consumed) at pH <6.2 and anaerobic conditions. Thus, we showed the potential of bacteria-based succinate fermentation under weak acidic conditions.  相似文献   

7.
Summary Ethanol is identified as a strongly inhibitory metabolite in addition to acetic acid and 2,3-butanediol in 2,3-butanediol production by Enterobacter aerogenes. A model is proposed to describe the multiproduct-inhibited growth of E. aerogenes in 2,3-butanediol fermentation. The model is verified with data from anaerobic and microaerobic continuous culture. On the basis of this model the difference in biomass production and product patterns during anaerobic and microaerobic growth of E. aerogenes is discussed. Offprint requests to: W.-D. Deckwer  相似文献   

8.
We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.  相似文献   

9.

Background

The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth) was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth). Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium). Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation.

Results

The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 mL/h-1.L-1, and those the two-step and the one-step processes of the small-scale fermentative hydrogen production system were 41.2 mL/h-1.L-1 and 35.1 mL/h-1.L-1, respectively.

Conclusion

Therefore, the results indicate that the hydrogen production efficiency of the two-step process is higher than that of the one-step process.  相似文献   

10.
Glycerol has become an attractive substrate for bio-based production processes. However, Escherichia coli, an established production organism in the biotech industry, is not able to grow on glycerol under strictly anaerobic conditions in defined minimal medium due to redox imbalance. Despite extensive research efforts aiming to overcome these limitations, anaerobic growth of wild-type E. coli on glycerol always required either the addition of electron acceptors for anaerobic respiration (e.g. fumarate) or the supplementation with complex and relatively expensive additives (tryptone or yeast extract). In the present work, driven by model-based calculations, we propose and validate a novel and simple strategy to enable fermentative growth of E. coli on glycerol in defined minimal medium. We show that redox balance could be achieved by uptake of small amounts of acetate with subsequent reduction to ethanol via acetyl-CoA. Using a directed laboratory evolution approach, we were able to confirm this hypothesis and to generate an E. coli strain that shows, under anaerobic conditions with glycerol as the main substrate and acetate as co-substrate, robust growth (μ = 0.06 h−1), a high specific glycerol uptake rate (10.2 mmol/gDW/h) and an ethanol yield close to the theoretical maximum (0.92 mol per mol glycerol). Using further stoichiometric calculations, we also clarify why complex additives such as tryptone used in previous studies enable E. coli to achieve redox balance. Our results provide new biological insights regarding the fermentative metabolism of E. coli and offer new perspectives for sustainable production processes based on glycerol.  相似文献   

11.
Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. In this study, hydrogen producing, cellulolytic cultures were enriched from compost material at 52, 60 and 70 °C. Highest cellulose degradation and highest H2 yield were 57% and 1.4 mol-H2 mol-hexose−1 (2.4 mol-H2 mol-hexose-degraded−1), respectively, obtained at 52 °C with the heat-treated (80 °C for 20 min) enrichment culture. Heat-treatments as well as the sequential enrichments decreased the diversity of microbial communities. The enrichments contained mainly bacteria from families Thermoanaerobacteriaceae and Clostridiaceae, from which a bacterium closely related to Thermoanaerobium thermosaccharolyticum was mainly responsible for hydrogen production and bacteria closely related to Clostridium cellulosi and Clostridium stercorarium were responsible for cellulose degradation.  相似文献   

12.
Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these "defective" metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion (~8-9 genes), addition (~6-7 genes), up- and downexpression (~6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in "core" metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data.  相似文献   

13.
Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108   总被引:1,自引:0,他引:1  
Zhao X  Xing D  Fu N  Liu B  Ren N 《Bioresource technology》2011,102(18):8432-8436
A fermentative hydrogen-producing strain, RZF-1108, was isolated from a biohydrogen reactor, and identified as Clostridium beijerinckii on the basis of the 16S rRNA gene analysis and physiobiochemical characteristics. The effects of culture conditions on hydrogen production by C. beijerinckii RZF-1108 were investigated in batch cultures. The hydrogen production and growth of strain RZF-1108 were highly dependent on temperature, initial pH and substrate concentration. Yeast extract was a favorable nitrogen source for hydrogen production and growth of RZF-1108. Hydrogen production corresponded to cell biomass yield in different culture conditions. The maximum hydrogen evolution, yield and production rate of 2209 ml H2/l medium, 1.97 mol H2/mol glucose and 104.20 ml H2/g CDW h−1 were obtained at 9 g/l of glucose, initial pH of 7.0, inoculum volume of 8% and temperature of 35 °C, respectively. These results demonstrate that C. beijerinckii can efficiently produce H2, and is another model microorganism for biohydrogen investigations.  相似文献   

14.
Improvement of fermentative hydrogen production: various approaches   总被引:19,自引:2,他引:17  
Fermentation of biomass or carbohydrate-based substrates presents a promising route of biological hydrogen production compared with photosynthetic or chemical routes. Pure substrates, including glucose, starch and cellulose, as well as different organic waste materials can be used for hydrogen fermentation. Among a large number of microbial species, strict anaerobes and facultative anaerobic chemoheterotrophs, such as clostridia and enteric bacteria, are efficient producers of hydrogen. Despite having a higher evolution rate of hydrogen, the yield of hydrogen [mol H2 (mol substrate–1)] from fermentative processes is lower than that achieved using other methods; thus, the process is not economically viable in its present form. The pathways and experimental evidence cited in the literature reveal that a maximum of four mol of hydrogen can be obtained from substrates such as glucose. Modifications of the fermentation process, by redirection of metabolic pathways, gas sparging and maintaining a low partial pressure of hydrogen to make the reaction thermodynamically favorable, efficient product removal, optimum bioreactor design and integrating fermentative process with that of photosynthesis, are some of the ways that have been attempted to improve hydrogen productivity. This review briefly describes recent advances in these approaches towards improvement of hydrogen yield by fermentation.  相似文献   

15.
The carbon and nitrogen sources most suitable for L-asparaginase production by Enterobacter aerogenes were selected and their concentrations optimized in shake-flask cultures. Sodium citrate (1.0%) and diammonium hydrogen phosphate (0.16%) proved to be the best sources of carbon and nitrogen, respectively. Nitrogen catabolite repression of enzyme formation was absent in this bacterium. Cultivation in a reactor showed that the dissolved oxygen level is the limiting factor for L-asparaginase production by E. aerogenes. Glucose was found to be a repressor of enzyme synthesis. Asparagine was absent intracellularly when the L-asparaginase level was high. An increase in the extracellular alanine level when the dissolved oxygen remained low indicated a shift from aerobic to fermentative metabolism. Received: 20 July 1999 / Accepted: 2 October 1999  相似文献   

16.
In this paper, a simple and rapid method was developed in order to assess in comparative tests the production of binary biogas mixtures containing CO2 and another gaseous compound such as hydrogen or methane. This method was validated and experimented for the characterisation of the biochemical hydrogen potential of different pure strains and mixed cultures of hydrogen-producing bacteria (HPB) growing on glucose.The experimental results compared the hydrogen production yield of 19 different pure strains and sludges: facultative and strict anaerobic HPB strains along with anaerobic digester sludges thermally pre-treated or not. Significant yields variations were recorded even between different strains of the same species by i.e. about 20% for three Clostridium butyricum strains. The pure Clostridium butyricum and pasteurianum strains achieved the highest yields i.e. up to 1.36 mol H2/mol glucose compared to the yields achieved by the sludges and the tested Escherichia and Citrobacter strains.  相似文献   

17.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12.  相似文献   

18.
Modeling product formation in anaerobic mixed culture fermentations   总被引:1,自引:0,他引:1  
The anaerobic conversion of organic matter to fermentation products is an important biotechnological process. The prediction of the fermentation products is until now a complicated issue for mixed cultures. A modeling approach is presented here as an effort to develop a methodology for modeling fermentative mixed culture systems. To illustrate this methodology, a steady-state metabolic model was developed for prediction of product formation in mixed culture fermentations as a function of the environmental conditions. The model predicts product formation from glucose as a function of the hydrogen partial pressure (P(H2)), reactor pH, and substrate concentration. The model treats the mixed culture as a single virtual microorganism catalyzing the most common fermentative pathways, producing ethanol, acetate, propionate, butyrate, lactate, hydrogen, carbon dioxide, and biomass. The product spectrum is obtained by maximizing the biomass growth yield which is limited by catabolic energy production. The optimization is constrained by mass balances and thermodynamics of the bioreactions involved. Energetic implications of concentration gradients across the cytoplasmic membrane are considered and transport processes are associated with metabolic energy exchange to model the pH effect. Preliminary results confirmed qualitatively the anticipated behavior of the system at variable pH and P(H2) values. A shift from acetate to butyrate as main product when either P(H2) increases and/or pH decreases is predicted as well as ethanol formation at lower pH values. Future work aims at extension of the model and structural validation with experimental data.  相似文献   

19.
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H2/(min mg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号