首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biliary lipids, water and cholesterol gallstones   总被引:8,自引:0,他引:8  
Cholesterol supersaturation, hydrophobic bile salts, pronucleating proteins and impaired gall-bladder motility may contribute to gallstone pathogenesis. We here show that both gallstone-susceptible C57L and gallstone-resistant AKR male inbred mice exhibit supersaturated gall-bladder biles during early lithogenesis, whereas bile-salt composition becomes hydrophobic only in susceptible C57L mice. In vitro, cholesterol crystallization occurs depending on relative amounts of lipids; excess cholesterol may exceed solubilizing capacity of mixed bile salt-phospholipid micelles, whereas excess bile salts compared with phospholipids leads to deficient cholesterol-storage capacity in vesicles. In vivo, bile lipid contents are mainly determined at the level of the hepatocyte canalicular membrane, where specific transport proteins enable lipid secretion [ABCG5/G8 (ATP-binding cassette transporter G5/G8) for cholesterol, MDR3 (multi-drug resistant 3) for phospholipid, BSEP (bile salt export pump)]. These transport proteins are regulated by farnesoid X and liver X nuclear receptors. After nascent bile formation, modulation of bile water contents in biliary tract and gall-bladder exerts critical effects on cholesterol crystallization. During progressive bile concentration (particularly in the fasting gall-bladder), cholesterol and, preferentially, phospholipid transfer occurs from cholesterol-unsaturated vesicles to emerging mixed micelles. The remaining unstable cholesterol-enriched vesicles may nucleate crystals. Various aquaporins have recently been discovered throughout the biliary tract, with potential relevance for gallstone formation.  相似文献   

2.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

3.
High density lipoprotein cholesterol represents a major source of biliary cholesterol. Secretory phospholipase A2 (sPLA2) is an acute phase enzyme mediating decreased plasma HDL cholesterol levels. Clinical studies reported a link between increased sPLA2 expression and the presence of cholesterol gallstones. The aim of our study was to investigate whether the overexpression of human sPLA2 in transgenic mice affects biliary cholesterol secretion and gallstone formation. Liver weight (P < 0.01) and hepatic cholesterol content (P < 0.01) were significantly increased in sPLA2 transgenic mice compared with controls as a result of increased scavenger receptor class B type I (SR-BI)-mediated hepatic selective uptake of HDL cholesterol (P < 0.01), whereas hepatic SR-BI expression remained unchanged. However, biliary cholesterol secretion as well as fecal neutral sterol and fecal bile salt excretion remained unchanged in sPLA2 transgenic mice. Furthermore, gallstone prevalence in response to a lithogenic diet was identical in both groups. These data demonstrate that i) increased flux of cholesterol from HDL into the liver via SR-BI as a result of phospholipase modification of the HDL particle translates neither into increased biliary and fecal sterol output nor into increased gallstone formation, and ii) increased sPLA2 expression in patients with cholesterol gallstones might be a consequence rather than the underlying cause of the disease.  相似文献   

4.
The study of chylomicron pathway through which it exerts its metabolic effects on biliary cholesterol secretion is crucial for understanding how high dietary cholesterol influences cholelithogenesis. We explored a relationship between cholesterol absorption efficiency and gallstone prevalence in 15 strains of inbred male mice and the metabolic fate of chylomicron and chylomicron remnant cholesterol in gallstone-susceptible C57L and gallstone-resistant AKR mice. Our results show a positive and significant (P<0.0001, r=0.87) correlation between percent cholesterol absorption and gallstone prevalence rates. Compared with AKR mice, C57L mice displayed significantly greater absorption of cholesterol from the small intestine, more rapid plasma clearance of chylomicrons and chylomicron remnants, higher activities of lipoprotein lipase and hepatic lipase, greater hepatic uptake of chylomicron remnants, and faster secretion of chylomicron remnant cholesterol from plasma into bile. All of these increased susceptibility to cholesterol gallstone formation in C57L mice. We conclude that genetic variations in cholesterol absorption efficiency are associated with cholesterol gallstone formation in inbred mice and cholesterol absorbed from the intestine provides an important source for biliary hypersecretion. Differential metabolism of the chylomicron remnant cholesterol between C57L and AKR mice clearly plays a crucial role in the formation of lithogenic bile and gallstones.  相似文献   

5.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

6.
Cholesterol gallstones occur rarely in childhood and adolescence and increase linearly with age in both genders. To explore whether aging per se increases cholesterol saturation of bile and gallstone prevalence, and to investigate age-related changes in hepatic and biliary lipid metabolism, we studied gallstone-susceptible C57L mice and resistant AKR mice of both genders fed 8 weeks with a lithogenic diet containing 1% cholesterol, 0.5% cholic acid, and 15% butter fat starting at (young adult) 8, (older adult) 36, and (aged) 50-weeks-of-age. After the 8-week feeding, gallstone prevalence, gallbladder size, biliary lipid secretion rate, and HMG-CoA reductase activity were significantly greater but cholesterol 7alpha-hydroxylase activity was lower in C57L mice of both genders compared with AKR mice. Increasing age augmented biliary secretion and intestinal absorption of cholesterol, reduced hepatic synthesis and biliary secretion of bile salts, and decreased gallbladder contractility, all of which increased susceptibility to cholesterol cholelithiasis in C57L mice. We conclude that aging per se is an independent risk factor for cholesterol gallstone formation. Because aging increases significantly biliary cholesterol hypersecretion and gallstone prevalence in C57L mice carrying Lith genes, it is highly like that Longevity (aging) genes can enhance lithogenesis of Lith (gallstone) genes.  相似文献   

7.
Restoration of gallstone susceptibility by leptin in C57BL/6J ob/ob mice   总被引:5,自引:0,他引:5  
The absence of leptin due to the ob mutation leads to obesity and confers resistance to diet-induced cholesterol gallstone formation in otherwise susceptible C57BL/6J mice. To investigate contributions of obesity and leptin to gallstone susceptibility, C57BL/6J ob/ob mice were treated daily with i.p. saline or recombinant murine leptin at low (1 microgram/g bw) or high (10 microgram/g bw) doses and were pair-fed a lithogenic diet (15% dairy fat, 1.25% cholesterol, 0.5% cholic acid). Weight loss in ob/ob mice increased in proportion to leptin dose, indicating that the lithogenic diet did not impair leptin sensitivity. In a dose-dependent manner, leptin promoted cholesterol crystallization and gallstone formation, which did not occur in saline-treated mice. Notwithstanding, leptin decreased biliary lipid secretion rates without enriching cholesterol in bile. Leptin did not affect bile salt hydrophobicity, but did increase the biliary content of the most abundant molecular species of phosphatidylcholine, 16:0-18:2. Treatment with leptin down-regulated 3-hydroxy-3-methylglutaryl CoA reductase and prevented cholesterol from accumulating in liver. Consistent with increased hepatic clearance, leptin decreased plasma HDL cholesterol concentrations. This was accommodated in liver without up-regulation of cholesterol 7alpha-hydroxylase or Acat. These data suggest that despite the lithogenic diet, endogenous sources constitute a significant proportion of biliary cholesterol during leptin-induced weight loss. Kinetic factors related to cholesterol nucleation, gallbladder contractility, or mucin secretion may have accounted for leptin-induced gallstone formation.  相似文献   

8.
Cholesterol supersaturation of bile is one prerequisite for gallstone formation. In the present study of Chinese patients with gallstones, we investigated whether this phenomenon was correlated with the hepatic expression of genes participating in the metabolism of cholesterol and bile acids. Twenty-two nonobese, normolipidemic patients (female-male, 11:11) with gallstones were investigated with 13 age- and body mass index-matched gallstone-free controls (female-male, 10:3). The bile from the gallstone patients had higher cholesterol saturation than that from the controls. The mRNA levels of ABCG5, ABCG8, and liver X receptor alpha (LXRalpha) in the gallstone patients were increased by 51, 59, and 102%, respectively, and significantly correlated with the molar percentage of biliary cholesterol and cholesterol saturation index (CSI). The mRNA and protein levels of the hepatic scavenger receptor class B type I (SR-BI) were increased, and a significant correlation was found between the protein levels and the CSI. No differences were recorded between the two groups concerning the hepatic synthesis of cholesterol, bile acids, and esterification of cholesterol. Our results suggest that the upregulation of ABCG5/ABCG8 in gallstone patients, possibly mediated by increased LXRalpha, may contribute to the cholesterol supersaturation of bile. Our data are consistent with the possibility that increased amounts of biliary cholesterol may originate from plasma HDL cholesterol by enhanced transfer via SR-BI.  相似文献   

9.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

10.
11.
miRNA-223 has been previously reported to play an essential role in hepatic cholesterol homeostasis. However, its role in regulation of biliary cholesterol secretion and gallstone formation remains unknown. Hence, mice with conventional knockout (KO), hepatocyte-specific knockout (ΔHepa) / knockdown (KD) or gain expression of miRNA-223 were included in the study and were subjected to lithogenic diet (LD) for various weeks. The gall bladders and liver tissues were harvested for cholesterol crystal imaging, gallstone mass measurement and molecular analysis. Levels of cholesterol, bile salt, phospholipids, and triglyceride were determined in serum, liver tissues, and bile by enzyme color reactive assays. A 3'' UTR reporter gene assay was used to verify the direct target genes for miRNA-223. LD-induced gallstone formation was remarkably accelerated in miRNA-223 KO, ΔHepa, and KD mice with concurrent enhancement in total cholesterol levels in liver tissues and bile. Key biliary cholesterol transporters ABCG5 and ABCG8 were identified as direct targets of miRNA-223. Reversely, AAV-mediated hepatocyte-specific miRNA-223 overexpression prevented gallstone progression with reduced targets expression. Therefore, the present study demonstrates a novel role of miRNA-223 in the gallstone formation by targeting ABCG5 and ABCG8 and elevating miRNA-223 would be a potentially novel approach to overcome the sternness of cholesterol gallstone disease.  相似文献   

12.
High density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver where its cholesterol is secreted preferentially into bile. The scavenger receptor class B type I (SR-BI) is believed to play a pivotal role in unloading HDL cholesterol and its ester to hepatocytes. Here, using male SR-BI "att" mice with a dysfunctional mutation in the Sr-b1 promoter, we studied whether approximately 50% of normal SR-BI expression influences gallstone susceptibility in these mice fed a lithogenic diet containing 1% cholesterol, 0.5% cholic acid and 15% butterfat. Our results showed that the disruption of SR-BI expression reduced cholesterol secretion by 37% in the chow-fed state and 10% on the lithogenic diet, and while delaying incidence slightly, did not influence cumulative susceptibility to cholesterol gallstones. The lithogenic diet induced marked increases in biliary cholesterol and phospholipid secretion rates but not of bile salts. Basal expression of hepatic SR-BI protein was dissimilar in both wild-type and SR-BI mice, and remained unaltered in response to the lithogenic diet. By two independent dual isotope methods, intestinal cholesterol absorption was unimpaired by attenuation of the SR-BI which also displays low-density expression on small intestinal enterocytes. We conclude that although HDL cholesterol is a principal source of biliary cholesterol in the basal state, uptake of cholesterol from chylomicron remnants appears to be the major contributor to biliary cholesterol hypersecretion during diet-induced cholelithogenesis in the mouse.  相似文献   

13.
The inbred C57L strain but not the AKR strain of mice carry Lith genes that determine cholesterol gallstone susceptibility. When C57L mice are fed a lithogenic diet containing 15% fat, 1% cholesterol, and 0.5% cholic acid, gallbladder bile displays rapid cholesterol supersaturation, mucin gel accumulation, increases in hydrophobic bile salts, and rapid phase separation of solid and liquid crystals, all of which contribute to the high cholesterol gallstone prevalence rates (D. Q-H. Wang, B. Paigen, and M. C. Carey. J. Lipid Res. 1997. 38: 1395;-1411). We have now determined the hepatic secretion rates of biliary lipids in fasting male and female C57L and AKR mice and the intercross (C57L x AKR)F(1) before and at frequent intervals during feeding the lithogenic diet for 56 days. Bile flow and biliary lipid secretion rates were measured in the first hour of an acute bile fistula and circulating bile salt pool sizes were determined by the "washout" technique after cholecystectomy. Compared with AKR mice, we found that i) C57L and F(1) mice on chow displayed significantly higher secretion rates of all biliary lipids, and larger bile salt pool sizes, as well as higher bile salt-dependent and bile salt-independent flow rates; ii) the lithogenic diet further increased biliary cholesterol and lecithin outputs, but bile salt outputs remained constant. Biliary coupling of cholesterol to lecithin increased approximately 30%, setting the biophysical conditions necessary for cholesterol phase separation in the gallbladder; and iii) no gender differences in lipid secretion rates were noted but male mice exhibited significantly more hydrophobic bile salt pools than females.We conclude that in gallstone-susceptible mice, Lith genes determine increased outputs of all biliary lipids but promote cholesterol hypersecretion disproportionately to lecithin and bile salt outputs thereby inducing lithogenic bile formation.  相似文献   

14.
The major pathway for elimination of cholesterol in mammals is via secretion into bile. Biliary cholesterol secretion is mediated by the ATP-binding cassette (ABC) transporters ABCG5 (G5) and ABCG8 (G8) and is stimulated by cholesterol and by the non-cholesterol steroids cholate and diosgenin. To define the relationship between G5G8 expression and biliary cholesterol secretion, we measured G5 and G8 mRNA levels and biliary cholesterol concentrations in genetically manipulated mice expressing 0, 1, 2, 5, 10, or 16 copies of the two genes. Biliary cholesterol levels varied directly with G5G8 copy number and hepatic mRNA levels over a >16-fold range. Thus neither delivery of cholesterol to the transporter nor levels of cholesterol acceptors in bile were limiting under these conditions. In wild-type mice, cholate and diosgenin both increased biliary cholesterol concentrations 2-3-fold. The increase in biliary cholesterol content was dependent on expression of G5 and G8; neither steroid increased biliary cholesterol levels in G5G8-/- mice. Cholate treatment was associated with a farnesoid X receptor (FXR)-dependent increase in hepatic mRNA and protein levels of G5 and G8. In contrast to cholate, diosgenin treatment did not affect G5G8 expression. Diosgenin increased the expression of several pregnane X receptor (PXR) target genes and the choleretic effect of diosgenin was reduced by approximately 70% in PXR knock-out mice. Thus G5 and G8 are required to modulate biliary cholesterol secretion in response to cholate and diosgenin, but the choleretic effects of these two steroids are mediated by different mechanisms requiring FXR and PXR, respectively.  相似文献   

15.
The protein kinase C (PKC) family of Ca(2+) and/or lipid-activated serine-threonine protein kinases is implicated in the pathogenesis of obesity and insulin resistance. We recently reported that protein kinase Cβ (PKCβ), a calcium-, diacylglycerol-, and phospholipid-dependent kinase, is critical for maintaining whole body triglyceride homeostasis. We now report that PKCβ deficiency has profound effects on murine hepatic cholesterol metabolism, including hypersensitivity to diet-induced gallstone formation. The incidence of gallstones increased from 9% in control mice to 95% in PKCβ(-/-) mice. Gallstone formation in the mutant mice was accompanied by hyposecretion of bile acids with no alteration in fecal bile acid excretion, increased biliary cholesterol saturation and hydrophobicity indices, as well as hepatic p42/44(MAPK) activation, all of which enhance susceptibility to gallstone formation. Lithogenic diet-fed PKCβ(-/-) mice also displayed decreased expression of hepatic cholesterol-7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8b1). Finally, feeding a modified lithogenic diet supplemented with milk fat, instead of cocoa butter, both increased the severity of and shortened the interval for gallstone formation in PKCβ(-/-) mice and was associated with dramatic increases in cholesterol saturation and hydrophobicity indices. Taken together, the findings reveal a hitherto unrecognized role of PKCβ in fine tuning diet-induced cholesterol and bile acid homeostasis, thus identifying PKCβ as a major physiological regulator of both triglyceride and cholesterol homeostasis.  相似文献   

16.
Leptin administration to obese C57BL/6J (ob/ob) mice results in weight loss by reducing body fat. Because adipose tissue is an important storage depot for cholesterol, we explored evidence that leptin-induced weight loss in ob/ob mice was accompanied by transport of cholesterol to the liver and its elimination via bile. Consistent with mobilization of stored cholesterol, cholesterol concentrations in adipose tissue remained unchanged during weight loss. Plasma cholesterol levels fell sharply, and microscopic analyses of gallbladder bile revealed cholesterol crystals as well as cholesterol gallstones. Surprisingly, leptin reduced biliary cholesterol secretion rates without affecting secretion rates of bile salts or phospholipids. Instead, cholesterol supersaturation of gallbladder bile was due to marked decreases in bile salt hydrophobicity and not to hypersecretion of biliary cholesterol per se, such as occurs in humans during weight loss. In addition to regulating bile salt composition, leptin treatment decreased bile salt pool size. The smaller, more hydrophilic bile salt pool was associated with substantial decreases in intestinal cholesterol absorption. Within the liver, leptin treatment reduced the activity of 3-hydroxy-3-methylglutaryl-CoA reductase, but it did not change activities of cholesterol 7alpha-hydroxylase or acyl-CoA:cholesterol acyltransferase. These data suggest that leptin regulates biliary lipid metabolism to promote efficient elimination of excess cholesterol stored in adipose tissue. Cholesterol gallstone formation during weight loss in ob/ob mice appears to represent a pathologic consequence of an adaptive response that prevents absorption of biliary and dietary cholesterol.  相似文献   

17.
Abcb11 encodes for the liver bile salt export pump, which is rate-limiting for hepatobiliary bile salt secretion. We employed transthyretin-Abcb11 and BAC-Abcb11 transgenes to develop mice overexpressing the bile salt export pump in the liver. The mice manifest increases in bile flow and biliary secretion of bile salts, phosphatidylcholine, and cholesterol. Hepatic gene expression of cholesterol 7alpha-hydroxylase and ileal expression of the apical sodium bile salt transporter are markedly reduced, whereas gene expression of targets of the nuclear bile salt receptor FXR (ileal lipid-binding protein, short heterodimer partner (SHP) is increased. Because these changes in gene expression are associated with an increased overall hydrophobicity of the bile salt pool and a 4-fold increase of the FXR ligand taurodeoxycholate, they reflect bile salt-mediated regulation of FXR and SHP target genes. Despite the increased biliary secretion of bile salts, fecal bile salt excretion is unchanged, suggestive of an enhanced enterohepatic cycling of bile salts. Abcb11 transgenic mice fed a lithogenic (high cholesterol/fat/cholic acid) diet display markedly reduced hepatic steatosis compared with wild-type controls. We conclude that mice overexpressing Abcb11 display an increase in biliary bile salt secretion and taurodeoxycholate content, which is associated with FXR/SHP-mediated changes in hepatic and ileal gene expression. Because these mice are resistant to hepatic lipid accumulation, regulation of Abcb11 may be important for the pathogenesis and treatment of steatohepatitis.  相似文献   

18.
High level of high-density lipoprotein cholesterol (HDL-cholesterol) is inversely correlated to the risk of atherosclerotic cardiovascular disease. The protective effect of HDL is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and is later delivered to the liver for further metabolism and bile excretion. We have previously demonstrated that P2Y13 receptor is critical for RCT and that intravenous bolus injection of cangrelor (AR-C69931MX), a partial agonist of P2Y13 receptor, can stimulate hepatic HDL uptake and subsequent lipid biliary secretion without any change in plasma lipid levels. In the present study, we investigated the effect of longer-term treatment with cangrelor on lipoprotein metabolism in mice. We observed that continuous delivery of cangrelor at a rate of 35 μg/day/kg body weight for 3 days markedly decreased plasma HDL-cholesterol level, by increasing the clearance of HDL particles by the liver. These effects were correlated to an increase in the rate of biliary bile acid secretion. An increased expression of SREBP-regulated genes of cholesterol metabolism was also observed without any change of hepatic lipid levels as compared to non-treated mice. Thus, 3-day cangrelor treatment markedly increases the flux of HDL-cholesterol from the plasma to the liver for bile acid secretion. Taken together our results suggest that P2Y13 appears a promising target for therapeutic intervention aimed at preventing or reducing cardiovascular risk.  相似文献   

19.
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.  相似文献   

20.
Mice overexpressing hepatic Abcb11 rapidly develop cholesterol gallstones   总被引:5,自引:0,他引:5  
Cholelithiasis is a polygenic disease, although the genes responsible for gallstone formation have not yet been clearly identified. QTL analysis has identified the Lith 1 loci on mouse Chromosome 2, and the hepatic bile salt transporter Abcb11 maps to the Lith 1 locus. We have used recently developed TTR-Abcb11 transgenic mice that overexpress Abcb11 to determine the effects of Abcb11 overexpression on cholesterol gallstone formation. TTR-Abcb11 and FVB/NJ strain control mice were fed a lithogenic or chow diet and cholesterol crystal and gallstone formation were measured. Biliary lipids in gallbladder bile and gene expression of canalicular lipid transporters were also analyzed. TTR-Abcb11 mice fed a lithogenic diet had an increased rate of cholesterol crystal and gallstone formation. This was associated with an increase in both the hydrophobic bile salt and cholesterol content of gallbladder bile. Expression of Abcb4, Abcg5, and Abcg8 did not change before gallstone formation. These data indicate that hepatic overexpression of Abcb11 increases the rate of cholesterol gallstone formation. This is likely because of increases in bile salt hydrophobicity but not because of alterations of other biliary lipid transporters. These findings strongly support Abcb11 as a Lith 1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号