首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoC1, trnH-psbA, psbK-psbI, atpF-atpH, and internal transcribed spacer (ITS)). The core combination rbcL+matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL+matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

2.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoCl, trnH-psbA, psbK-psbI, atpFatpH, and internal transcribed spacer (ITS)). The core combination rbcL + matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL +matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

3.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

4.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, marK, and trnH-psbA),were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH-psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH-psbA and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%,respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH-psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH-psbA as a candidate barcode sequence.  相似文献   

5.
悬钩子属DNA条形码通用序列的初步筛选   总被引:1,自引:0,他引:1  
为了建立悬钩子属(Rubus)植物的DNA条形码分子鉴定技术,筛选获得适用于悬钩子属植物的通用条形码序列。该研究基于GenBank数据对ITS、ITS2、matK、rbcL、trnH-psbA、trnL-trnF 6个DNA条形码序列进行了遗传变异、barcoding gap、建树等评估分析。结果显示,trnH-psbA、matK、rbcL、rtnL-trnF的种内变异与种间变异差异较大,变异分辨率分别为97.32%、83.33%、79.07%、64.95%,存在较大的barcoding gap;NJ一致树分析显示,matK的单系性比例最高(67%),其次为trnH-psbA(64%),rtnL-trnF(43%),rbcL(30%)。结果表明,悬钩子属植物的matKtrnH-psbA序列种内变异与种间变异差异较大,能较好地区分不同物种,具有较大的鉴定潜力。建议将matKtrnH-psbA作为悬钩子属植物鉴定的核心条形码序列,rtnL-trnF、rbcL作为辅助条形码序列。  相似文献   

6.
There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.  相似文献   

7.
Testing candidate plant barcode regions in the Myristicaceae   总被引:2,自引:0,他引:2  
The concept and practice of DNA barcoding have been designed as a system to facilitate species identification and recognition. The primary challenge for barcoding plants has been to identify a suitable region on which to focus the effort. The slow relative nucleotide substitution rates of plant mitochondria and the technical issues with the use of nuclear regions have focused attention on several proposed regions in the plastid genome. One of the challenges for barcoding is to discriminate closely related or recently evolved species. The Myristicaceae, or nutmeg family, is an older group within the angiosperms that contains some recently evolved species providing a challenging test for barcoding plants. The goal of this study is to determine the relative utility of six coding (Universal Plastid Amplicon - UPA, rpoB, rpoc1, accD, rbcL, matK) and one noncoding (trnH-psbA) chloroplast loci for barcoding in the genus Compsoneura using both single region and multiregion approaches. Five of the regions we tested were predominantly invariant across species (UPA, rpoB, rpoC1, accD, rbcL). Two of the regions (matK and trnH-psbA) had significant variation and show promise for barcoding in nutmegs. We demonstrate that a two-gene approach utilizing a moderately variable region (matK) and a more variable region (trnH-psbA) provides resolution among all the Compsonuera species we sampled including the recently evolved C. sprucei and C. mexicana. Our classification analyses based on nonmetric multidimensional scaling ordination, suggest that the use of two regions results in a decreased range of intraspecific variation relative to the distribution of interspecific divergence with 95% of the samples correctly identified in a sequence identification analysis.  相似文献   

8.
One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.  相似文献   

9.
DNA barcoding is a method of species identification and recognition using DNA sequence data. A tiered or multilocus method has been recommended for barcoding plant species. In this study, we sampled 196 individuals representing 9 genera and 54 species of Juglandaceae to investigate the utility of the four potential barcoding loci (rbcL, matK, trnH-psbA, and internal transcribed spacer (ITS)). Our results show that all four DNA regions are easy to amplify and sequence. In the four tested DNA regions, ITS has the most variable information, and rbcL has the least. At generic level, seven of nine genera can be efficiently identified by matK. At species level, ITS has higher interspecific p-distance than the trnH-psbA region. Difficult to align in the whole family, ITS showed heterogeneous variability among different genera. Except for the monotypic genera (Cyclocarya, Annamocarya, Platycarya), ITS appeared to have limited power for species identification within the Carya and Engelhardia complex, and have no power for Juglans or Pterocarya. Overall, our results confirmed that a multilocus tiered method for plant barcoding was applicable and practicable. With higher priority, matK is proposed as the first-tier DNA region for genus discrimination, and the second locus at species level should have enough stable variable characters.  相似文献   

10.
The pondweeds (Potamogetonaceae) are among the most important plant groups in the aquatic environment. Owing to their high morphological and ecological diversity, species identification of this aquatic family remains problematic. DNA barcoding involves sequencing a standard DNA region and has been shown to be a powerful tool for species identification. In the present study, we tested four barcoding markers (rbcL, matK, internal transcribed spacer (ITS), and trnH-psbA) in 15 Potamogeton species and two Stuckenia species, representing most species of the Potamogetonaceae in China. The results show that all four regions can distinguish and support the newly proposed genera of Stuckenia from Potamogeton. Using ITS and trnH-psbA, significant interspecific genetic variability was shown. However, intraspecific genetic variability of trnH-psbA is high and so it is not suitable for barcoding in Potamogetonaceae. The ITS and matK regions showed good discrimination. However, matK was not easy to sequence using universal primers. The best performing single locus was ITS, making it a potentially useful DNA barcode in Potamogetonaceae.  相似文献   

11.
DNA barcoding is a method of species identification and recognition using DNA sequence data. A tiered or multilocus method has been recommended for barcoding plant species. In this study, we sampled 196 individuals representing 9 genera and 54 species of Juglandaceae to investigate the utility of the four potential barcoding loci (rbcL, matK, trnH-psbA, and internal transcribed spacer (ITS)). Our results show that all four DNA regions are easy to amplify and sequence. In the four tested DNA regions, ITS has the most variable information, and rbcL has the least. At generic level, seven of nine genera can be efficiently identified by matK. At species level, ITS has higher interspecific p-distance than the trnH-psbA region. Difficult to align in the whole family, ITS showed heterogeneous variability among different genera. Except for the monotypic genera (Cyclocarya, Annamocarya, Platycarya), ITS appeared to have limited power for species identification within the Carya and Engelhardia complex, and have no power for Juglans or Pterocarya. Overall, our results confirmed that a multilocus tiered method for plant barcoding was applicable and practicable. With higher priority, matK is proposed as the first-tier DNA region for genus discrimination, and the second locus at species level should have enough stable variable characters.  相似文献   

12.
DNA barcoding of a group of European liverwort species from the genus Herbertus was undertaken using three plastid (matK, rbcL and trnH-psbA) and one nuclear (ITS) marker. The DNA barcode data were effective in discriminating among the sampled species of Herbertus and contributed towards the detection of a previously overlooked European Herbertus species, described here as H. norenus sp. nov. This species shows clear-cut differences in DNA sequence for multiple barcode regions and is also morphologically distinct. The DNA barcode data were also useful in clarifying taxonomic relationships of the European species with some species from Asia and North America. In terms of the discriminatory power of the different barcode markers, ITS was the most informative region, followed closely by matK. All species were distinguishable by ITS alone, rbcL + matK and various other multimarker combinations.  相似文献   

13.
Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

14.
锦葵科植物DNA条形码通用序列的筛选   总被引:1,自引:0,他引:1  
王柯  陈科力  刘震  陈士林 《植物学报》2011,46(3):276-284
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序, 比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图, 使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力, 进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明, ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高, 其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势, 且纳入60个属316个种共1 228个样品的网上数据后, 其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高, 其鉴定成功率为63.2%, 并能鉴别一些ITS序列无法鉴别的种。实验结果表明, ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

15.
蒟蒻薯属(薯蓣科)植物DNA条形码研究   总被引:6,自引:0,他引:6  
蒟蒻薯属(Tacca)植物种间在形态上差别不大,导致分类上存在一定的困难.DNA条形码是一种利用短的DNA标准片段来鉴别和发现物种的方法.本研究利用核基因ITS片段和叶绿体基因trn H-psbA,rbcL,matK片段对蒟蒻薯属6个种的DNA条形码进行研究,对4个DNA片段可用性,种内种间变异,barcode gap进行了分析,采用Tree-based和BBA两种方法比较不同序列的鉴定能力.结果显示:单片段ITS正确鉴定率最高,片段组合rbcL+matK正确鉴定率最高.支持CBOL植物工作组推荐的条码组合rbcL+matK可作为蒟蒻薯属物种鉴定的标准条码,建议ITS片段作为候选条码.丝须蒟蒻薯Tacca integrifolia采自西藏的居群与马来西亚居群形成了2个不同的遗传分支,且两者在形态上也存在一定的差异,很可能是一个新种.  相似文献   

16.
A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants (N = 251 samples). The plastid markers comprise portions of five coding (rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding (trnH-psbA, atpF-atpH, and psbK-psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% (trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85-100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci (matK, psbK-psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69-71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems.  相似文献   

17.
作为新一代植物志iFlora的重要组成部分,DNA条形码已经成为物种鉴定中重要且有效的方法。本研究以亚热带森林的乔木树种为研究对象,开展了DNA条形码的尝试性工作。为评估DNA条形码对鉴定亚热带森林树种的有效性,收集并研究了来自哀牢山自然保护区内5l科111属中204个树种的525个乔木个体。结果显示,所选4个DNA片段(rbcL,matK,trnH-psbA和ITS)的PCR扩增成功率都超过90%;测序成功率rbcL和matK最高,分别为90.7%和90.5%,trnH-psbA次之(83.6%),ITS最低(73.5%),表明4个片段在亚热带森林乔木中都具有较好的通用性。应用BLAST与NJ Tree两种方法,对物种和属水平的鉴别成功率进行统计,发现单片段中ITS最高,分别为68.4%-81.3%和99.0%~100%,核心条码rkL和matK组合的成功率是52.8%~60.2%和86.7%~90.5%,再与补充条码trnH-psbA和ITS联合,可以成功鉴别74.7%~79.6%哀牢山自然保护区亚热带森林中的乔木物种。由于ITS片段在亚热带森林部分重要树种类群(樟科和壳斗科等)中的测序成功率较差,所以对这些植物类群采用trnH-psbA作为DNA条形码是一个更好的选择。  相似文献   

18.
DNA barcoding is a new technology which can identify species rapidly based on short and standardized DNA sequences. Ligularia, a genus of Asteraceae with about 140 species, exhibits high morphological and ecological diversity, which makes the classification and species delimitation difficult, especially in the cases of closely related taxa. In this study, we tested four DNA core barcoding regions (ITS, matK, psbA trnH and rbcL) in 144 samples representing 35 species of Ligularia. The results revealed that the chloroplast regions (matK, psbA trnH and rbcL) have extremely low species identification rate due to low interspecific variation. Conversely, ITS sequence showed higher species identification rate (60%) and could discriminate the species which are difficult to identify. The combination of these four gene fragments did not improve the ability of species discrimination.  相似文献   

19.
对锦葵科植物样品的ITS、ITS2、rbcL、matK和psbA-trnH序列进行PCR扩增和测序,比较各序列的扩增效率、测序成功率、种内和种间变异的差异以及barcoding gap图,使用BLAST1和Nearest Distance方法评价不同序列的鉴定能力,进而从这些候选序列中筛选出较适合锦葵科植物鉴别的DNA条形码序列。结果表明,ITS序列在采集的锦葵科植物11个种26个样品中的扩增成功率较高,其种内、种间变异差异和barcoding gap较ITS2、psbA-trnH及rbcL序列具有更明显的优势,且纳入60个属316个种共1228个样品的网上数据后,其鉴定成功率可达89.9%。psbA-trnH序列的扩增和测序成功率最高,其鉴定成功率为63.2%,并能鉴别一些ITS序列无法鉴别的种。实验结果表明,ITS和psbA-trnH是较适合鉴别锦葵科植物的DNA条形码序列组合。  相似文献   

20.
The potential application of DNA barcodes of plastid (matK, trnH-psbA, petD, and rbcL) and nuclear (internal transcribed spacer (ITS) of rDNA) DNA regions was investigated for 25 Hedyotis taxa. The ITS showed the best species discrimination by resolving 23 of the species as exclusive lineages with no shared alleles between any of the 24 distinct species (H. Assimilis and H. Mellii are not supported as distinct species based on our molecular and morphological data). Conversely, rbcL performed the worst and only resolved 10 of the species as exclusive lineages, and 10 species with shared alleles. Using ITS has the advantage of high PCR amplification success and it provides good intra- and interspecific variation distribution patterns. The most powerful plastid markers were petD and trnH-psbA, but we could amplify and sequence trnH-psbA for only 83% of the accessions sampled. Combination of ITS and petD performed extremely well, with all 24 of the distinct species resolved as exclusive lineages and no shared alleles between any of the distinct species. We therefore recommend ITS, or a combination of ITS and petD, as the standard DNA barcode in Hedyotis, but acknowledge that there are no shared alleles between distinct species for marK and rbcL combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号