首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract: The transduction pathways coupling muscarinic receptors to induction of fos and jun genes were investigated in neuroblastoma SH-SY5Y cells. Stimulation with carbachol induced expression of c- fos , fosB , c- jun , junB , and junD . This effect was abolished by pretreatment with atropine, indicating an involvement of muscarinic receptors. These genes were also induced by activation of protein kinase C with phorbol ester or by elevating the intracellular Ca2+ concentration with a Ca2+ ionophore. The Ca2+ effect was inhibited by KN-62, suggesting an induction through Ca2+/calmodulin-dependent kinase II. Inhibition of protein kinase C with GF109203X suppressed the carbachol-stimulated increase in mRNA levels of c- fos , fosB , and junB by ∼70% but had only minor effects on the expression of c- jun and junD . On the other hand, preincubation with KN-62 attenuated the carbachol-induced increase in c- jun and junD expression by 70% but had no effect on c- fos , fosB , and junB mRNA levels. Simultaneous inhibition of both protein kinase C and Ca2+/calmodulin-dependent kinase II completely abolished the carbachol-stimulated expression of c- jun and junD , but c- fos , fosB , and junB were still expressed to a certain extent under this condition. Comparison of the inhibitory effects of GF109203X and Gö 6976 suggests the involvement of classical protein kinase C isozymes in muscarinic receptor-stimulated expression of fos and jun genes. These results demonstrate that the muscarinic receptor-induced expression of individual fos and jun genes is regulated via different pathways, primarily protein kinase C or Ca2+/calmodulin-dependent kinase II.  相似文献   

2.
3.
Abstract: Primary cortical cultures were used to study the effects of four convulsants on c- fos expression. Approximately 30% of the neurons in these cultures displayed c- fos nuclear immunostaining under basal conditions. The addition of tetrodotoxin, nifedipine, or δ-hexachlorocyclohexane produced a significant decrease in c- fos basal values. Lindane (γ-hexachlorocyclohexane), Bay K 8644, pentylenetetrazole, and picrotoxinin produced a significant increase in c- fos immunoreactivity and in c- fos mRNA expression. Treatment of cells with tetrodotoxin before administration of the convulsant agents lowered c- fos staining below basal levels. In contrast, δ-hexachlorocyclohexane or nifedipine failed to block only the picrotoxinin-induced increase. The differential pattern of expression shown by c- fos after these treatments suggests various mechanisms of action for the compounds studied. The results obtained with δ-hexachlorocyclohexane and nifedipine suggest that picrotoxinin activates c- fos expression by calcium-requiring intracellular signaling pathways that are different from those activated by Bay K 8644, pentylenetetrazole, or γ-hexachlorocyclohexane, which, at least in part, act via L-type calcium channels.  相似文献   

4.
5.
6.
Abstract: Light activation of rhodopsin in the Drosophila photoreceptor induces a G protein-coupled signaling cascade that results in the influx of Ca2+ into the photoreceptor cells. Immediately following light activation, phosphorylation of a photoreceptor-specific protein, phosrestin I, is detected. Strong sequence similarity to mammalian arrestin and electroretinograms of phosrestin mutants suggest that phosrestin I is involved in light inactivation. We are interested in identifying the protein kinase responsible for the phosphorylation of phosrestin I to link the transmembrane signaling to the light-adaptive response. Type II Ca2+/calmodulin-dependent kinase is one of the major classes of protein kinases that regulate cellular responses to transmembrane signals. We show here that partially purified phosrestin I kinase activity can be immunodepleted and immunodetected with antibodies to Ca2+/calmodulin-dependent kinase II and that the kinase activity exhibits regulatory properties that are unique to Ca2+/calmodulin-dependent kinase II such as Ca2+ independence after autophosphorylation and inhibition by synthetic peptides containing the Ca2+/calmodulin-dependent kinase II autoinhibitory domain. We also show that Ca2+/calmodulin-dependent kinase II activity is present in Drosophila eye preparations. These results are consistent with our hypothesis that Ca2+/calmodulin-dependent kinase II phosphorylates phosrestin I. We suggest that Ca2+/calmodulin-dependent kinase II plays a regulatory role in Drosophila photoreceptor light adaptation.  相似文献   

7.
Abstract: To study the phosphorylation state of τ in vivo, we have prepared antisera by immunizing rabbits with synthetic phosphopeptides containing phosphoamino acids at specific sites that are potential targets for τ protein kinase II. Immunoblot experiments using these antisera demonstrated that τ in microtubule-associated proteins is phosphorylated at Ser144 and at Ser315. Almost all τ variants separated on two-dimensional gel electrophoresis were phosphorylated at Ser144 and nearly one-half of them at Ser315. Phosphorylation at Ser144 and at Thr147 of τ isolated from heat-stable brain extracts was shown to be developmentally regulated, with the highest level of phosphorylation found at postnatal week 1. In vitro phosphorylation of τ by τ protein kinase I, a kinase responsible for abnormal phosphorylation of τ found in paired helical filaments of patients with Alzheimer's disease, was enhanced by prior phosphorylation of τ by τ protein kinase II. Thus, we suggest that τ protein kinase II is indirectly involved, at least in part, in the regulation of the phosphorylation state of τ in neuronal cells.  相似文献   

8.
Abstract: Calcium acts as a second messenger and can enter neurons through several types of calcium channel. We sought to determine whether the calcium-dependent mechanisms inducing c- fos expression are identical following activation, by appropriate drugs, of L-type voltage-sensitive calcium channels or NMDA and non-NMDA receptors or following inhibition of the GABAergic system. We used primary cortical neurons and OF1 mice, and the levels of c- fos protein and c- fos mRNA were detected after treatment with the drugs by means of immunocytochemistry and in situ hybridization. The calmodulin antagonist N -(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) abolished γ-hexachlorocyclohexane-, Bay K 8644-, pentylenetetrazole-, and kainic acid-induced increases in c- fos expression in cultured neurons. Conversely, W-7 did not affect either NMDA- or picrotoxinin-mediated increases in c- fos expression. In mice, the pattern of protooncogene expression displayed some differences compared with cultured neurons, depending on the treatment. W-7 administered before γ-hexachlorocyclohexane, Bay K 8644, or pentylenetetrazole blocked the expression of c- fos elicited by these compounds. However, W-7 was not able to abolish c- fos expression induced by picrotoxinin. In the animals treated with W-7 before kainic acid or NMDA administration, c- fos expression was inhibited in cerebral cortex, but it was still present in hippocampus. These results agree with the existence of diverse mechanisms transducing the calcium signals to the nucleus. Calmodulin may mediate neuronal responses depending on the route by which calcium enters the neuron, resulting in activation of different enzymes.  相似文献   

9.
Abstract: Previous studies have indicated that certain members of the cyclin-dependent kinase/mitogen-activated protein kinase superfamily are involved in apoptosis of neuronal cells. Here, we have examined programmed cell death induced by withdrawal of neurotrophic support from CNS (rat retinal) and PNS (chick sympathetic, sensory, and ciliary) neurons. All four neuron types were equally rescued by the purine analogues olomoucine and roscovitine. Olomoucine inhibits multiple cyclin-dependent and mitogen-activated protein kinases with similar potency. Roscovitine is a more selective cyclin-dependent kinase inhibitor; but, so is butyrolactone I, which did not prevent retinal ganglion cell death. The specific p38MAPK inhibitor SB-203580 did not prevent apoptosis in retinal ganglion cells. Death of these cells in the absence of neurotrophic factors was accompanied by morphological changes indicative of apoptosis, including nuclear condensation and fragmentation. Treatment with olomoucine or roscovitine not only prevented these apoptotic changes in retinal ganglion cells but also blocked neurite outgrowth. The survival-promoting activity of olomoucine correlated with its in vitro IC50 for c-Jun N-terminal kinase-1 and its potency to repress c- jun induction in live PC12 cells. Roscovitine was more potent in rescuing neurons than in inhibiting Jun kinase. Thus, the antiapoptotic action of roscovitine might be due to inhibition of additional kinases.  相似文献   

10.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase. Tg-induced rise in [Ca2+]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury.  相似文献   

11.
12.
13.
14.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   

15.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

16.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

17.
Abstract: Phosphorylation of brain spectrin was studied by a combination of in vivo and in vitro approaches. Chemical analysis of phosphate groups on electrophoretically purified mouse brain β-spectrin yielded a stoichiometry of 3.2 ± 0.18 mol of PO4/mol of β-spectrin. The spectrin isolated by chromatographic methods from mouse brain, pig brain, and human erythrocytes yielded 4.1, 5.6, and 3.2 mol of PO4/mol of spectrin heterodimer, respectively. The 32P labeling of spectrin in retinal ganglion cell neurons or NB 2a/d1 neuroblastoma cells with [32P]orthophosphate showed phosphorylation of only β-spectrin in vivo. Two-dimensional phosphopeptide map analyses showed that most of the in vivo sites on β-spectrin were phosphorylated by either a heparin-sensitive endogenous cytoskeleton-associated protein kinase or protein kinase A. Phosphoamino acid analysis of in vivo and in vitro phosphorylated β-spectrin showed that [32P]phosphate groups were incorporated into both serine (>90%) and threonine residues. In vitro, phosphate groups were incorporated into threonine residues by the heparin-sensitive endogenous protein kinase. The amino acid sequence VQQQLQAFNTY of an α-chymotryptic 32P-labeled peptide phosphorylated by the heparin-sensitive cytoskeleton-associated endogenous protein kinase corresponded to amino acid residues 338–348 on the β1 repeat of β-spectrinG (βSPIIa) gene. These data suggest that phosphorylation of Thr347, which is localized on the presumptive synapsin I binding domain of β-spectrinG, may play a role in synaptic function by regulating the binding of spectrin to synaptic vesicles.  相似文献   

18.
Abstract: Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate (BAY K 8644), an analog of dihydropyridine calcium channel antagonists, stimulated 45Ca uptake into PC12 pheochromocytoma cells. Half-maximal stimulation occurred at 80 n M BAY K 8644. Enhancement of uptake was inhibited by cationic and organic calcium channel blockers, but not by tetrodotoxin, which is consistent with an effect on voltage-dependent calcium channels. Stimulation of 45Ca uptake by BAY K 8644 occurred only at elevated concentrations of extracellular K+, suggesting that BAY K 8644 may interact with calcium channels in the open (activated) state.  相似文献   

19.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   

20.
Abstract: The rat μ-opioid receptor (rMOR1), expressed in human embryonic kidney 293 (HEK293) cells, shows a desensitization to the inhibitory effect of the μ agonist DAMGO on adenylate cyclase activity within 4 h of DAMGO preincubation. To investigate the role of calcium/calmodulin-dependent protein kinase II (CaM kinase II) on μ-opioid receptor desensitization, we coexpressed rMOR1 and constitutively active CaM kinase II in HEK293 cells. This coexpression led to a faster time course of agonist-induced desensitization of the μ-opioid receptor. The increase of desensitization could not be observed with a μ-opioid receptor mutant (S261A/S266A) that lacks two putative CaM kinase II phosphorylation sites in the third intracellular loop. In addition, injection of CaM kinase II in Xenopus oocytes led only to desensitization of expressed rMOR1, but not of an S261A/S266A receptor mutant. These results suggest that phosphorylation of Ser261 and Ser266 by CaM kinase II is involved in the desensitization of the μ-opioid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号