首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attempts to assess the magnitude of global biodiversity have focused on estimating species richness. However, this is but one component of biodiversity, and others, such as numbers of individuals or biomass, are at least as poorly known and just as important to quantify. Here, we use a variety of methods to estimate the global number of individuals for a single taxon, birds. The different methods yield surprisingly consistent estimates of a global bird population of between 200 billion and 400 billion individuals (1 billion=109). We discuss some of the implications of this figure.  相似文献   

2.
How many species are there is a question receiving more attention from biologists and reasons for this are suggested. Different methods of answering this question are examined and include: counting all species; extrapolations from known faunas and regions; extrapolations from samples; methods using ecological models; censusing taxonomists' views. Most of these methods indicate that global totals of 5 to 15 million species are reasonable. The implications of much higher estimates of 30 million species or more are examined, particularly the question of where these millions of species might be found.  相似文献   

3.
How many membrane proteins are there?   总被引:9,自引:1,他引:8  
One of the basic issues that arises in functional genomics is the ability to predict the subcellular location of proteins that are deduced from gene and genome sequencing. In particular, one would like to be able to readily specify those proteins that are soluble and those that are inserted in a membrane. Traditional methods of distinguishing between these two locations have relied on extensive, time-consuming biochemical studies. The alternative approach has been to make inferences based on a visual search of the amino acid sequences of presumed gene products for stretches of hydrophobic amino acids. This numerical, sequence-based approach is usually seen as a first approximation pending more reliable biochemical data. The recent availability of large and complete sequence data sets for several organisms allows us to determine just how accurate such a numerical approach could be, and to attempt to minimize and quantify the error involved. We have optimized a statistical approach to protein location determination. Using our approach, we have determined that surprisingly few proteins are misallocated using the numerical method. We also examine the biological implications of the success of this technique.  相似文献   

4.
5.
6.
Phospholipidosis induced by drugs with a cationic amphiphilic structure is a generalized condition in humans and animals that is characterized by an intracellular accumulation of phospholipids and the concurrent development of concentric lamellar bodies. The primary mechanism responsible for the development of phospholipidosis is an inhibition of lysosomal phospholipase activity by the drugs. While the biochemical and ultrastructural features of the condition have been well characterized, much less effort has been directed toward understanding whether the condition has adverse effects on the organism. While there are a few cationic amphiphilic drugs that have been reported to cause phospholipidosis in humans, the principal concern with this condition is in the pharmaceutical industry during preclinical testing. While this class of drugs should technically be referred to as cationic lipophilic, the term cationic amphiphilic is widely used and recognized in this field, and for this reason, the terminology cationic amphiphilic drugs (CADs) will be employed in this Minireview. The aim of this Minireview is to provide an evaluation of the state of knowledge on the functional consequences of CAD-induced phospholipidosis.  相似文献   

7.
8.
9.
How many species of Cladocera are there?   总被引:4,自引:4,他引:0  
An estimation of the number of taxa within families, genera and local faunas of Cladocera reveals that only c. 129 species (17% of all known species) may be considered as sufficiently well described (valid species), and c. 146 as rather well described (fair species) but needing further study using modern methods of investigation. The status of all other species is vague. The families Chydoridae, Daphniidae and Sididae and genera Diaphanosoma, Daphnia, (including Daphniopsis), Megafenestra, Scapholeberis, Eurycercus, Chydorus, Ephemeroporus and Pleuroxus have been comparatively studied best. The largest number of valid species is known from Europe, North America, Australia and South America, and the smallest number from Africa. Presence of large number of vague species of Cladocera negatively affects faunistic, zoogeographic, and ecological studies of continental waters.Dedicated to the memory of Professor D. J. Frey  相似文献   

10.
11.
12.
13.
Over the last 5 years proteogenomics (using mass spectroscopy to identify proteins predicted from genomic sequences) has emerged as a promising approach to the high‐throughput identification of protein N‐termini, which remains a problem in genome annotation. Comparison of the experimentally determined N‐termini with those predicted by sequence analysis tools allows identification of the signal peptides and therefore conclusions on the cytoplasmic or extracytoplasmic (periplasmic or extracellular) localization of the respective proteins. We present here the results of a proteogenomic study of the signal peptides in Escherichia coli K‐12 and compare its results with the available experimental data and predictions by such software tools as SignalP and Phobius. A single proteogenomics experiment recovered more than a third of all signal peptides that had been experimentally determined during the past three decades and confirmed at least 31 additional signal peptides, mostly in the known exported proteins, which had been previously predicted but not validated. The filtering of putative signal peptides for the peptide length and the presence of an eight‐residue hydrophobic patch and a typical signal peptidase cleavage site proved sufficient to eliminate the false‐positive hits. Surprisingly, the results of this proteogenomics study, as well as a re‐analysis of the E. coli genome with the latest version of SignalP program, show that the fraction of proteins containing signal peptides is only about 10%, or half of previous estimates.  相似文献   

14.
Sequence information from an increasing number of complete mitochondrial genomes indicates that a large number of evolutionary distinct organisms import nucleus-encoded tRNAs. In the past five years, much research has been initiated on the features of imported tRNAs, the mechanism and the energetics of the process as well as on the components of the import machinery. In summary, these studies show that the import systems of different species exhibit some unique features, suggesting that more than one mechanism might exist to import tRNAs.  相似文献   

15.
16.
17.
The order of discovery can have a profound effect upon the way in which we think about the function of a gene. In E. coli, recA is nearly essential for cell survival in the presence of DNA damage. However, recA was originally identified, as a gene required to obtain recombinant DNA molecules in conjugating bacteria. As a result, it has been frequently assumed that recA promotes the survival of bacteria containing DNA damage by recombination in which DNA strand exchanges occur. We now know that several of the processes that interact with or are controlled by recA, such as excision repair and translesion synthesis, operate to ensure that DNA replication occurs processively without strand exchanges. Yet the view persists in the literature that recA functions primarily to promote recombination during DNA repair. With the benefit of hindsight and more than three decades of additional research, we reexamine some of the classical experiments that established the concept of DNA repair by recombination, and we consider the possibilities that recombination is not an efficient mechanism for rescuing damaged cells, and that recA may be important for maintaining processive replication in a manner that does not generally promote recombination.  相似文献   

18.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

19.
The most dramatic gradient in global biodiversity is between marine and terrestrial environments. Terrestrial environments contain approximately 75-85% of all estimated species, but occupy only 30 per cent of the Earth's surface (and only approx. 1-10% by volume), whereas marine environments occupy a larger area and volume, but have a smaller fraction of Earth's estimated diversity. Many hypotheses have been proposed to explain this disparity, but there have been few large-scale quantitative tests. Here, we analyse patterns of diversity in actinopterygian (ray-finned) fishes, the most species-rich clade of marine vertebrates, containing 96 per cent of fish species. Despite the much greater area and productivity of marine environments, actinopterygian richness is similar in freshwater and marine habitats (15 150 versus 14 740 species). Net diversification rates (speciation-extinction) are similar in predominantly freshwater and saltwater clades. Both habitats are dominated by two hyperdiverse but relatively recent clades (Ostariophysi and Percomorpha). Remarkably, trait reconstructions (for both living and fossil taxa) suggest that all extant marine actinopterygians were derived from a freshwater ancestor, indicating a role for ancient extinction in explaining low marine richness. Finally, by analysing an entirely aquatic group, we are able to better sort among potential hypotheses for explaining the paradoxically low diversity of marine environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号