首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have studied the nucleotide specificity of vaccinia virus poly(A) polymerase using a novel primer extension assay. Oligoribonucleotide primers labeled at the 5' end with 32P were elongated by the enzyme in the presence of ATP, leading to the 3' addition of greater than 1000 adenylate residues/primer molecule. In the presence of UTP, the enzyme catalyzed 3' polymerization of long poly(U) tails, albeit at a reduced rate of chain growth. In the presence of both ATP and UTP, 3' addition was selective for ATP. The transient accumulation of RNAs elongated by 10-16 residues suggested that polyadenylation (and polyuridylation) was a biphasic reaction. Quantitative 3' addition of GMP (from GTP) or CMP (from CTP) to the primer was also observed, although the rate of chain growth was so slow as to allow synthesis of only short oligo(G) or oligo(C) tails. The deoxynucleotides 3'-dATP (cordycepin triphosphate) and ddATP were markedly inhibitory to poly(A) polymerase. Primer elongation studies were consistent with inhibition due to 3' incorporation of inhibitor and chain termination. Incubation of enzyme with [alpha-32P] cordycepin triphosphate resulted in labeling of the Mr 57,000 enzyme subunit, apparently via formation of a covalent nucleotidyl-protein complex. These data are discussed in light of their implications for the catalytic mechanism of polyadenylation.  相似文献   

2.
Glycerol-induced tubulin polymerization supported by non-guanine nucleotides was examined. The electrophoretically homogeneous tubulin was devoid of nucleoside diphosphate kinase activity and 95% saturated with exchangeable GDP and nonexchangeable GTP. All purine ribonucleoside 5'-triphosphates were active but no polymerization occurred with CTP or UTP. All polymerization reactions, as a function of nucleotide concentration, were similar: above a minimum (threshold) concentration, as the amount of nucleotide increased the reaction became progressively more rapid and extensive with a progressively shorter nucleation period. Threshold concentrations of ATP, XTP, ITP and GTP were 0.6 mM, 0.3 mM, 30 microM and 7 microM, respectively. Most ribose- and polyphosphate-modified ATP analogs also supported polymerization at high concentrations, but the activity of these analogs relative to ATP was very similar to the activity of cognate GTP analogs relative to GTP. Polymerization with ATP was associated with an ATPase reaction. ATP hydrolysis was potently inhibited by GDP and GTP and altered by antimitotic drugs in parallel with the effects of these agents on GTP hydrolysis. Substantial amounts of [8-14C]GDP bound in the exchangeable site of tubulin were displaced during polymerization with GTP or ATP, but much higher concentrations of ATP were required for equivalent displacement of the tubulin-bound GDP. Polymerization with GTP or ATP was inhibited in a qualitatively similar manner by GDP, with increasing concentrations of GDP causing a progressive prolongation of the nucleation period and reduction in reaction rate and extent. However, complete inhibition of polymerization required that GDP:GTP much greater than 1, but that GDP:ATP much less than 1. Inhibition appeared to be primarily competitive, since with higher triphosphate concentrations higher GDP concentrations were required for comparable inhibition. We conclude that ATP effects on tubulin polymerization are mediated through a feeble interaction at the exchangeable GTP site.  相似文献   

3.
1. 5'-Nucleotidase activity was obtained in a soluble form after treatment of a particulate fraction from Ehrlich ascites-tumour cells with deoxycholate. The relative rates of hydrolysis of 6-thioinosine 5'-phosphate, UMP, AMP, CMP, GMP, IMP, xanthosine monophosphate, thymidine monophosphate and 2',3'-AMP were 180, 129, 100, 93, 83, 79, 46, 41 and 3 respectively. 2. Values found for the Michaelis constant were: AMP, 67+/-12mum; IMP, 111+/-8mum; GMP, 93mum. 3. ATP and thymidine triphosphate were competitive inhibitors of AMP hydrolysis (inhibitor constants 0.4 and 4.8mum respectively); UTP, GTP and CTP were mixed competitive and non-competitive inhibitors. Thymidine triphosphate was a competitive inhibitor of IMP hydrolysis (inhibitor constant 14.4mum) and ATP, UTP and GTP showed mixed competitive and non-competitive inhibition. 4. ATP, thymidine triphosphate, UTP, GTP and CTP did not completely inhibit hydrolysis of AMP, IMP and UMP; the concentrations of ATP required to inhibit AMP and IMP hydrolysis by 50% were 12 and 230mum respectively. 5. Non-hyperbolic curves relating activity to UMP concentration were obtained in the presence and absence of triphosphates. 6. After fractionation on Sephadex G-200 columns a single peak of 5'-nucleotidase activity (particle weight 120000-125000) was obtained with AMP, IMP and GMP as substrates. UMP hydrolysis was catalysed by enzyme in this peak and in two slower peaks corresponding to apparent particle weights of 32000 and 16000; a single component (particle weight 120000), reacting with UMP and insensitive to UTP inhibition, was obtained when the column was eluted with buffer containing 1mm-UMP. 7. The possible significance of the results in the regulation of tumour-cell 5'-nucleotidase is discussed.  相似文献   

4.
The kinetics of interaction of PPi and its diphosphonic analog, methylenediphosphonic acid (MDPA), with nucleoside triphosphates, DNA and Mg2+ binding sites of DNA-dependent RNA polymerase II from calf thymus was investigated. The values of apparent Km in the NTP polymerization reaction for ATP and CTP equal to 2.7 X 10(-4) and 1.8 X 10(-4) M, respectively, were determined. It was shown that MDPA and PPi competitively inhibited the RNA polymerase reaction with respect to nucleoside triphosphate. The inhibition constants (Ki) of ATP and CTP incorporation for MDPA were 2.2 X 10(-4) and 3.3 X 10(-4) M, respectively, while those of the nucleoside triphosphate incorporation for PPi were equal to 1.4 X 10(-4) and 2.0 X 10(-4) M, respectively. MDPA and PPi were incompetitive inhibitors of template (DNA) and Mn2+. A possible mechanism of inhibition of the RNA polymerase reaction by MDPA is proposed.  相似文献   

5.
2'-Deoxy-2'-azidocytidine-5'-triphosphate was investigated as an inhibitor in two reconstructed enzyme systems which catalyze the replication of two viral DNAs. During replication of the duplex replicative form of phiX174 DNA, DNA polymerase III holoenzyme was weakly inhibited and inhibition was reversed by dCTP. A more pronounced inhibition, not reversed by either dCTP or CTP, was observed during replication of the single-stranded DNA of the bacteriophage G4, a close relative of phiX174. This effect depended on the incorporation of 2'-deoxy-2'-azidocytidine-5'-triphosphate by primase (dnaG protein) which synthesizes a 29-residue RNA primer at the unique origin of bacteriophage G4 DNA replication. Extension of the primer strand, terminated by 2'-deoxy-2'-azidocytidine-5'-triphosphate is then severely inhibited. Primase was also inhibited by the 2'-deoxy-2'-azido derivatives of ATP, GTP, and UTP.  相似文献   

6.
Synthesis of ribonucleic acid by isolated rat liver mitochondria   总被引:2,自引:2,他引:0       下载免费PDF全文
Rat liver mitochondria isolated in sucrose-N-tris(hydroxymethyl)methyl-2-aminoethane-sulphonic acid (TES) incorporated [(3)H]UTP into RNA for 1h. Incorporation was inhibited 50% by 1mug of actinomycin D/ml, 1mug of acriflavine/ml and 0.5mug of ethidium bromide/ml but was insensitive to rifampicin, rifamycin SV, streptovarcin and deoxyribonuclease. After the first 10min of incubation, the synthesis was insensitive to ribonuclease. RNA synthesis by mitochondria isolated in sucrose-EDTA was insensitive to actinomycin D and sensitive to ribonuclease during the first 10min of the incubation but thereafter the sensitivities were the same as for mitochondria isolated in sucrose-TES. In a hypo-osmotic medium the relative extent of incorporation of the four ribonucleoside triphosphates into RNA was CTP>UTP=ATP>GTP. In an iso-osmotic medium the incorporation of CTP and GTP decreased. All four nucleotides were incorporated into RNA in a DNA-dependent process, as indicated by the inhibition by actinomycin D. In addition, CTP and ATP were incorporated into the CCA end of mitochondrial tRNA. ATP was also incorporated into an unidentified acid-insoluble compound, which hydrolysed in alkali to a product that was not ATP, ADP or 5'- or 2(3')-AMP. Atractyloside inhibited the incorporation of ATP into RNA with 50% inhibition at 2-3nmol/mg of protein. The [(3)H]UTP-labelled RNA had peaks of 16S and 13S characteristic of mitochondrial rRNA. In addition a peak at 20-21S was observed as well as heterogeneous RNA sedimenting throughout the gradient. The synthesis of all these species was inhibited by actinomycin D, indicating that rat liver mitochondrial DNA codes for mitochondrial rRNA as well as other as yet unidentified species.  相似文献   

7.
8.
A ribo-deoxyribonucleotide primer synthesized by primase.   总被引:5,自引:0,他引:5  
  相似文献   

9.
DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5′-TGGTC-3′) than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain.  相似文献   

10.
The phosphodiesterase of Mycobacterium smegmatis; was strongly inhibited by ATP and ADP, CTP, GTP, TTP, their corresponding deoxy derivatives and deoxy ATP were inhibitory to the enzyme while the mononucleotides AMP, CMP, GMP and TMP were slightly stimulatory. Adenosine at 2.0 mM stimulated enzyme activity of 50%.  相似文献   

11.
12.
The effects of different concentrations of ATP, GTP, UTP and CTP on polysome stability and function in a cell-free protein-synthesizing system prepared from rat liver were studied. Increasing the concentration of ATP in the incubation medium to 15mm resulted in progressive disaggregation of the polysomes; at ATP concentrations above 2mm their capacity to incorporate amino acids into peptide chains diminished. The same disaggregation phenomenon could be produced by incubating polysomes in a buffered medium containing 5mm-Mg(2+) and increasing concentrations of ATP. Although the disaggregating action of ATP could be prevented by increasing Mg(2+) concentration, the amino acid incorporation in the cell-free protein-synthesizing system remained impaired. The effects of different concentrations of GTP, UTP and CTP on polysome stability were similar to those of ATP. Increasing the concentrations of each nucleoside triphosphate also inhibited the hydrolysis of GTP in the cell-free protein-synthesizing system.  相似文献   

13.
Cordycepin triphosphate inhibited in vitro [3H]GMP incorporation by pricornavirus-specific polymerase complexes isolated from infected HeLa cells. The inhibition of [3H]GMP incorporation could be reversed with ATP added to the reaction mixture along with the inhibitor, but not with GTP so added or with ATP added 10 min after the inhibitor. Products synthesized in vitro in the presence of cordycepin triphosphate lacked full-length single-stranded viral RNA. These results support RNA chain termination by specific competition with ATP as the mechanism of inhibition of picornavirus-specific RNA synthesis by cordycepin triphosphate.  相似文献   

14.
The primase fragment of bacteriophage T7 gene 4 protein catalyzes the synthesis of oligoribonucleotides in the presence of ATP, CTP, Mg(2+) (or Mn(2+)), and DNA containing a primase recognition site. During chain initiation, ATP binds with a K(m) of 0.32 mM, and CTP binds with a K(m) of 0.85 mM. Synthesis of the dinucleotides proceeds at a rate of 3.8/s. The dinucleotide either dissociates or is extended to a tetranucleotide. The primase preferentially inserts ribonucleotides forming Watson-Crick base pairs with the DNA template >200-fold more rapidly than other ribo- or deoxynucleotides. 3'-dCTP binds the primase with a similar affinity as CTP and is incorporated as a chain terminator at a rate (1)/(100) that of CTP. ATP analogues alpha,beta-methylene ATP, beta,gamma-methylene ATP, and beta,gamma-imido ATP are incorporated by the primase fragment at the 5'-ends of the oligoribonucleotides but not at the 3'-ends. A model is presented in which the primase fragment utilizes two nucleotide-binding sites, one for the initiating ATP and one for the nucleoside triphosphate which elongates the primer on the 3'-end. The initiation site binds ATP or oligoribonucleotides, whereas the elongation site binds ATP or CTP as directed by the template.  相似文献   

15.
AN ENZYME SYSTEM IN RAT BRAIN NUCLEI INCORPORATING AMP INTO POLYADENYLATE   总被引:2,自引:0,他引:2  
Abstract— The presence of an ATP polymerizing system has been demonstrated in rat brain nuclei. The enzymic activity was not dependent on DNA, and poly A itself primed the incorporation of AMP into polyadenylate. Poly U did not prime the incorporation of AMP. The incorporation obtained in the presence of ribosomal RNA from rat brain as primer was mainly attributable to terminal attachment of AMP. Actinomycin and inorganic ortho-phosphate had no effect on the enzymic activity, however, inorganic pyrophosphate, ammonium sulphate and nucleoside triphosphates (GTP, CTP and UTP) were inhibitory. The same nuclear extract of brain, used for the synthetic reaction producing poly A, also degraded the polynucleotide to yield adenosine mono, di and triphosphates.  相似文献   

16.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

17.
Hans Kleinig  Bodo Liedvogel 《Planta》1980,150(2):166-169
1. Fatty acid synthesis in isolated intact chromoplasts from [1-14C]acetate was made possible by using ATP, ADP (via adenylate kinase), and, with decreasing efficiency, UTP, CTP, and GTP as energy sources. 2. The glycolytic path from dihydroxyacetone phosphate to acetyl-CoA operates within the chromoplasts. The glycolytic intermediates, especially 2-phosphoglycerate and phosphoenolpyruvate, served as very effective energy donors for fatty acid synthesis by phosphorylating the endogenous adenine nucleotide pool. 3. In the presence of exogenous ATP or ADP, appreciable amounts of in vitro formed fatty acids were found as acyl-CoA and subsequent products, mainly phosphatidylcholine. When other energy sources were used most of the acids formed were in the free form, and to a minor extent, in the phosphatidic acid and diacylglycerol fractions. Similar results have recently been reported for spinach chloroplasts (Kleinig and Liedvogel 1979, FEBS Lett.101, 339–342).Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - UTP uridine triphosphate - CTP cytidine triphosphate - GTP gnanosine triphosphate  相似文献   

18.
M J Modak 《Biochemistry》1976,15(16):3620-3626
Pyridoxal 5'-phosphate at concentrations greater than 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalyzed by a variety of DNA polymerases. The requirement for a phosphate as well as aldehyde moiety of pyridoxal phosphate for inhibition to occur is clearly shown by the fact that neither pyridoxal nor pyridoxamine phosphate are effective inhibitors. Since the addition of nonenzyme protein or increasing the amount of template primer exerted no protective effect, there appears to be specific affinity between pyridoxal phosphate and polymerase protein. The deoxynucleoside triphosphates, however, could reverse the inhibition. The binding of pyridoxal 5'-phosphate to enzyme appears to be mediated through classical Schiff base formation between the pyridoxal phosphate and the free amino group(s) present at the active site of the polymerase protein. Kinetic studies indicate that inhibition by pyridoxal phosphate is competitive with respect to substrate deoxynucleoside triphosphate(s).  相似文献   

19.
The kinetic and regulatory properties of partially purified phosphoenolpyruvate (PEP) carboxykinase (EC 4.1.1.32) from Rhodospirillum rubrum were studied. The enzyme was active with guanosine-and inosinephosphates and must thus be classified as GTP (ITP): oxaloacetate carboxylyase (transphosphorylating). In the direction of oxaloacetate-formation, the enzyme was strongly inhibited by ATP (Ki=0.03 mM). ITP, UTP, CTP and GTP were less inhibitory. The inhibition was competitive with respect to GDP or IDP, but not with respect to PEP. In the direction of PEP-synthesis, the enzyme was not inhibited, but rather activated by ATP.  相似文献   

20.
Inhibition of DNA primase and polymerase alpha from calf thymus was examined. DNA primase requires a 3'-hydroxyl on the incoming NTP in order to polymerize it, while the 2'-hydroxyl is advantageous, but not essential. Amazingly, primase prefers to polymerize araATP rather than ATP by 4-fold (kcat/KM). However, after incorporation of an araNMP into the growing primer, further synthesis is abolished. The 2'- and 3'-hydroxyls of the incoming nucleotide appear relatively unimportant for nucleotide binding to primase. Polymerization of nucleoside triphosphates by DNA polymerase alpha onto a DNA primer was similarly analyzed. Removing the 3'-hydroxyl of the incoming triphosphate decreases the polymerization rate greater than 1000-fold (kcat/KM), while a 2'-hydroxyl in the ribo configuration abolishes polymerization. If the 2'-hydroxyl is in the ara configuration, there is almost no effect on polymerization. An araCMP or ddCMP at the 3'-terminus of a DNA primer slightly decreased DNA binding as well as binding of the next correct 2'-dNTP. Changing the primer from DNA to RNA dramatically and unpredictably altered the interactions of pol alpha with araNTPs and ddNTPs. Compared to the identical DNA primer, pol alpha discriminated 4-fold better against araCTP polymerization when the primer was RNA, but 85-fold worse against ddCTP polymerization. Additionally, pol alpha elongated RNA primers containing 3'-terminal araNMPs more efficiently than the identical DNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号