首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aminoglycoside 6'-N-acetyltransferase [AAC(6')-I] and AAC(6')-II enzymes represent a class of bacterial proteins capable of acetylating tobramycin, netilmicin, and 2'-N-ethylnetilmicin. However, an important difference exists in their abilities to modify amikacin and gentamicin. The AAC(6')-I enzymes are capable of modifying amikacin. In contrast, the AAC(6')-II enzymes are capable of modifying gentamicin. Nucleotide sequence comparison of the aac(6')-Ib gene and the aac(6')-IIa gene showed 74% sequence identity (K. J. Shaw, C. A. Cramer, M. Rizzo, R. Mierzwa, K. Gewain, G. H. Miller, and R. S. Hare, Antimicrob. Agents Chemother. 33:2052-2062, 1989). Comparison of the deduced protein sequences showed 76% identity and 82% amino acid similarity. A genetic analysis of these two proteins was initiated to determine which amino acids were responsible for the differences in specificity. Results of domain exchanges, which created hybrid AAC(6') proteins, indicated that amino acids in the carboxy half of the proteins were largely responsible for determining specificity. Mutations shifting the specificity of the AAC(6')-Ib protein to that of the AAC(6')-IIa protein (i.e., gentamicin resistance and amikacin sensitivity) have been isolated. DNA sequence analysis of four independent isolates revealed base changes causing the same amino acid substitution, a leucine to serine, at position 119. Interestingly, this serine occurs naturally at the same position in the AAC(6')-IIa protein. Oligonucleotide-directed mutagenesis was used to construct the corresponding amino acid change, a serine to leucine, in the AAC(6')-IIa protein. This change resulted in the conversion of the AAC(6')-IIa substrate specificity to that of AAC(6')-Ib. Analysis of additional amino acid substitutions within this region of AAC(6')-Ib support the model that we have identified an aminoglycoside binding domain of these proteins.  相似文献   

2.
The aim of the study was to evaluate the aminoglycoside resistance of Gram-negative bacilli isolated from patients. To the examination 35 strains of Enterobacteriaceae and 18 of non-fermentative bacteria were included. Resistance to aminoglycosides (gentamicin (G), netilmicin (Nt), tobramycin (T), amikacin (A), kanamycin (K), neomycin (N)) was established by disk diffusion method. Interpretation of enzymatic mechanisms was performed by Livermore. The most common enzymes AAC(6')I were found in Enterobacteriaceae group (mostly in E. cloaceae and P. mirabilis) and AAC(3') and in non-fermentative bacteria: AAC(6')I in P. aeruginosa and APH(3')VI and AAC(3')I in A. baumanii. The most frequent phenotype was resistance to six antibiotics (G, Nt, T, A, K, N) Resistance rates were high for gentamicin (>70 %) in both groups and amikacin (88,89 %) in non-fermentatives.  相似文献   

3.
Staphylococcus aureus obtained from a University Hospital in Poland were characterized in relation to resistance to aminoglycoside antibiotics and the distribution of the genes encoding the most clinically relevant aminoglycoside modifying enzymes (AMEs). Of a total of 118 S. aureus, 45 (38.1%) isolates were found to be resistant to at least one of the tested antibiotics. All aminoglycoside resistant isolates except one 44 (97.8%) were resistant to kanamycin. The majority of strains 37 (82.2%) and 32 (71.1%) expressed resistance to neomycin and tobramycin, respectively. Eleven strains (24.4%) were resistant to gentamicin or amikacin. All S. aureus strains were sensitive to netilmicin. The most prevalent resistance gene was aac(6')-Ie+aph(2') found in 13 (28.9%) strains and 12 (26.7%) isolates carried ant(4')-Ia gene, whilst aph(3')-IIIa gene was detected in only 7 (15.6%) isolates. Additionally, the ant(6)-Ia and str genes were detected in 14 (31.1%) and 2 (4.4%) strains, respectively. Ten (22.2%) strains resistant to amikacin, tobramycin, kanamycin or neomycin did not harbor any of the above-noted genes.  相似文献   

4.
The investigation was focused on 60 strains of Gr- microorganisms isolated from urocultures and resistant to gentamicin and/or amikacin. Resistance evaluation by the method of Bauer--Kirby with respect to 7 aminoglycoside aminocyclitols (streptomycin, spectinomycin, kanamycin, gentamicin, tobramycin, sisomicin, netilmicin and amikacin) as well as determination of minimal inhibitory concentrations revealed that the most frequently occurring resistance phenotype was streptomycin kanamycin gentamicin sisomicin tobramycin (91.66% tested microorganisms). Approximately 50% of all tested organisms were found to be susceptible to netilmicin. Assays for aminoglycoside-modifying enzymes using 32P ATP and 14C ATP confirmed APH(3')(5")--I and AAD(2") as resistance determinants regarding 4,6-substituted deoxystreptamines. Acetyltransferase determination by the method of Shannon and Phillips and that by van de Klundert et al. most frequently assumes for the formation of AAC(3)-II and AAC(3)-I. Assays utilizing radioactive labels in amikacin-resistant strains determine the enzymes APH(3') and AAD(2")-II.  相似文献   

5.
Resistance of gram-negative bacilli to aminoglycoside antibiotics differs by region and country. Previous studies have demonstrated predominance of the nucleotidyltransferase ANL(2") as the mechanism of enzymatic resistance to gentamicin in the United States and many European countries (Federal Republic of Germany, Switzerland, Greece, Turkey) whereas the acetylating enzymes AAC(6') and AAC(3) were the principal causes of resistance to aminoglycosides in Japan and Chile. In the present comparison of 18 drug resistant isolates of E. coli and Klebsiella sp. from Czechoslovakia and the United States, with aminoglycoside-inactivating enzymes, ANT(2") characterized the most strains from both countries. In a higher number of isolates from Czechoslovakia however, the aminoglycoside resistance was mediated by AAC(3). In the majority of strains a simultaneous occurrence of two gentamicin-inactivating enzymes i.e. ANT(2"), plus AAC (2'), or AAC(6') or AAC(3) was observed. In amikacin resistant E. coli strains the mechanism of resistance was represented by production of AAC(6') or AAC*--an acetyltransferase with uncommon substrate profile. In all E. coli and K. pneumoniae strains from the United States apart from ANT(2") also AAC(2') was detected. This represents a broadening of the host range of aac(2') gene, the occurrence of which has been limited only to Providencia and Proteus strains.  相似文献   

6.
Kim YT  Jang JH  Kim HC  Kim H  Lee KR  Park KS  Lee HJ  Kim YJ 《BMB reports》2011,44(4):262-266
The aac(6')-Ib gene is the most prevalent gene that encodes aminoglycoside-modifying enzymes and confers resistance to tobramycin, kanamycin, and amikacin. The aac(6')-Ib-cr variant gene can induce resistance against aminoglycoside and fluoroquinolone simultaneously. Two main methods, sequence analysis and the restriction enzyme method, can detect the aac(6')-Ib-cr variant in clinical strains. We collected the 85 strains that were believed to be aac(6')-Ib positive from clinical isolates. Among them, 38 strains were the wild-type; the remaining 47 strains were the aac(6')-Ib-cr variant. Of these 47 strains, 19 simultaneously harbored aac(6')-Ib and aac(6')-Ib-cr. Our study aims to report the characteristics of the 19 strains that simultaneously harbored both genes. This study is the first investigation published in Korea of strains that included both aac(6')-Ib and aac(6')-Ib-cr variant.  相似文献   

7.
The aacA-aphD aminoglycoside resistance determinant of the Staphylococcus aureus transposon Tn4001, which specifies resistance to gentamicin, tobramycin and kanamycin, has been cloned and shown to express these resistances in Escherichia coli. The determinant encoded a single protein with an apparent size of 59 kDa which specified both aminoglycoside acetyltransferase [AAC(6')] and aminoglycoside phosphotransferase [APH(2")] activities. Nucleotide sequence analysis of the determinant showed it to be capable of encoding a 479-amino-acid protein of 56.9 kDa. analysis of Tn1725 insertion mutants of the determinant indicated that resistance to tobramycin and kanamycin is due to the AAC activity specified by, approximately, the first 170 amino acids of the predicted protein sequence and is consistent with the gentamicin resistance, specified by the APH activity, being encoded within the C-terminal region of the protein. Comparison of the C-terminal end of the predicted amino acid sequence with the reported sequences of 13 APHs and a viomycin phosphotransferase revealed a region which is highly conserved among these phosphotransferases.  相似文献   

8.
The rise of antibiotic resistance as a public health concern has led to increased interest in studying the ways in which bacteria avoid the effects of antibiotics. Enzymatic inactivation by several families of enzymes has been observed to be the predominant mechanism of resistance to aminoglycoside antibiotics such as kanamycin and gentamicin. Despite the importance of acetyltransferases in bacterial resistance to aminoglycoside antibiotics, relatively little is known about their structure and mechanism. Here we report the three-dimensional atomic structure of the aminoglycoside acetyltransferase AAC(6')-Ii in complex with coenzyme A (CoA). This structure unambiguously identifies the physiologically relevant AAC(6')-Ii dimer species, and reveals that the enzyme structure is similar in the AcCoA and CoA bound forms. AAC(6')-Ii is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily of acetyltransferases, a diverse group of enzymes that possess a conserved structural motif, despite low sequence homology. AAC(6')-Ii is also a member of a subset of enzymes in the GNAT superfamily that form multimeric complexes. The dimer arrangements within the multimeric GNAT superfamily members are compared, revealing that AAC(6')-Ii forms a dimer assembly that is different from that observed in the other multimeric GNAT superfamily members. This different assembly may provide insight into the evolutionary processes governing dimer formation.  相似文献   

9.
Isolates of Staphylococcus aureus obtained from a Brazilian university hospital were characterized in relation to resistance to gentamicin and related aminoglycosides. Thirty-six isolates were susceptible to methicillin (MSSA) and 14 were resistant (MRSA). All isolates were sensitive to nucleic acid-binding compounds. All MRSA isolates and one MSSA isolate were demonstrated to be resistant to gentamicin and were coincidentally resistant to amikacin, kanamycin, neomycin and tobramycin. Among the gentamicin sensitive MSSA isolates, five isolates were found to be resistant only to kanamycin/neomycin. The resistance to gentamicin (and related aminoglycosides: kanamycin and tobramycin) must be due to AAC(6')-APH(2") activity. As these isolates also showed resistance to neomycin, they must carry an additional genetic element, probably the one responsible for APH(3')III activity, which accounts for the high level of resistance to kanamycin and to amikacin. The resistance to kanamycin/neomycin in the gentamicin sensitive isolates could not be attributed to the AAD(4')(4") activity because of the tobramycin sensitivity, and so could be ascribed to the APH(3')III activity. Curing and transfer experiments, as well as electrophoresis procedures, indicate that gentamicin resistance in Staph. aureus strains here studied has, characteristically, chromosomal localization.  相似文献   

10.
Abstract The aac(6')-lb' gene from Pseudomonas fluorescens BM2687, encoding an aminoglycoside 6'- N -acetyltransferase type II which confers resistance to gentamicin but not to amikacin, was characterized. Nucleotide sequence determination indicated total identity between aac6')-lb and the aac(6')-lb gene from Pseudomonas aeruginosa BM2656 [1] with the exception of a C-to-T transition that results in a serine to lecine substitution at position 83 of the deduced polypeptide. The aac(6')-lb gene specifies a type I enzyme which confers resistance to amikacin but not to gentamicin [2]. It thus appears that the point mutation detected is responsible for enzymic altered substrate specificity.  相似文献   

11.
The study of the mechanisms of aminoglycoside resistance in gramnegative pathogens of nosocomial infections in 14 hospitals of Russia showed that the basic mechanism was production of aminoglycoside modifying enzymes, mainly adenylyl transferase ANT(2"), acetyl transferases AAC(3)-V and ACC(6)-I, and phosphotransferases APH(3')-I and APH(3')-VI. In all the hospitals enzymes modifying gentamicin and tobramycin were wide spread while the resistance phenotypes to aminoglycosides were different in separate hospitals. Isepamycin proved to be the most active aminoglycoside. Recommendations for the use of antibiotics in hospital formulas and empiric therapy should be developed on the basis of the local specific features of the resistance in nosocomial pathogens to aminoglycosides.  相似文献   

12.
A conjugative aminoglycoside resistance plasmid pST2 has been isolated from Escherichia coli K-12 14R525, which was mated with a clinical isolate of Salmonella typhimurium S24. A novel resistance gene of aminoglycoside 6′-N-acetyltransferase[AAC(6′)] was cloned from plasmid pST2 on a 1,393 kilobase (kb) of Sphl-SalI fragment into vector pACYC184 and pUC18. This novel A AC (6′) gene in plasmid pST2 acetylated kanamycin, amikacin, dibekacin, tobramycin, gentamicin, netilmicin, and sisomicin. The complete nucleotide sequence of the novel AAC(6′) gene and its neighboring sequences were also determined. Minicell experiments detected only one protein of 24.7 kilodaltons (kDa) translated from an open reading frame of the 618 base pairs (bp) gene.  相似文献   

13.
The chromosomally encoded aminoglycoside N-acetyltransferase, AAC(2')-Ic, of Mycobacterium tuberculosis has a yet unidentified physiological function. The aac(2')-Ic gene was cloned and expressed in Escherichia coli, and AAC(2')-Ic was purified. Recombinant AAC(2')-Ic was a soluble protein of 20,000 Da and acetylated all aminoglycosides substrates tested in vitro, including therapeutically important antibiotics. Acetyl-CoA was the preferred acyl donor. The enzyme, in addition to acetylating aminoglycosides containing 2'-amino substituents, also acetylated kanamycin A and amikacin that contain a 2'-hydroxyl substituent, although with lower activity, indicating the capacity of the enzyme to perform both N-acetyl and O-acetyl transfer. The enzyme exhibited "substrate activation" with many aminoglycoside substrates while exhibiting Michaelis-Menten kinetics with others. Kinetic studies supported a random kinetic mechanism for AAC(2')-Ic. Comparison of the kinetic parameters of different aminoglycosides suggested that their hexopyranosyl residues and, to a lesser extent, the central aminocyclitol residue carry the major determinants of substrate affinity.  相似文献   

14.
In a continuing study from Dec 2006 to Apr 2008, we characterized nine multi-drug resistant Pseudomonas aeruginosa strains isolated from four patients in a ward at the Hiroshima University Hospital, Japan. Pulsed-field gel electrophoresis of SpeI-digested genomic DNAs from the isolates suggested the clonal expansion of a single strain; however, only one strain, NK0009, was found to produce metallo-β-lactamase. PCR and subsequent sequencing analysis indicated NK0009 possessed a novel class 1 integron, designated as In124, that carries an array of four gene cassettes: a novel aminoglycoside (AG) resistance gene, aac(6′)-Iag, bla IMP-1, a truncated form of bla IMP-1, and a truncated form of aac(6′)-Iag. The aac(6′)-Iag encoded a 167-amino-acid protein that shows 40% identity with AAC(6′)-Iz. Recombinant AAC(6′)-Iag protein showed aminoglycoside 6′-N-acetyltransferase activity using thin-layer chromatography (TLC) and MS spectrometric analysis. Escherichia coli carrying aac(6′)-Iag showed resistance to amikacin, arbekacin, dibekacin, isepamicin, kanamycin, sisomicin, and tobramycin; but not to gentamicin. A conjugation experiment and subsequent Southern hybridization with the gene probes for bla IMP-1 and aac(6′)-Ig strongly suggested In124 is on a conjugal plasmid. Transconjugants acquired resistance to gentamicin and were resistant to virtually all AGs, suggesting that the In124 conjugal plasmid also possesses a gene conferring resistance to gentamicin.  相似文献   

15.
The prevalence of glycopeptides, aminoglycosides and erythromycin resistance among Enterococcus faecalis and Enterococcus faecium was investigated. The susceptibility of 326 enterococcal hospital isolates to amikacin, kanamycin, netilmicin and tobramycin were determined using disk diffusion method. The minimum inhibitory concentration (MIC) of vancomycin, teicoplanin, gentamicin, streptomycin, and erythromycin were determined by microbroth dilution method. The genes encoding aminoglycoside modifying enzymes described as AMEs genes, erythromycin-resistant methylase (erm) and vancomycin-resistant were targeted by multiplex-PCR reaction. High level resistance (HLR) to gentamicin and streptomycin among enterococci isolates were 52% and 72% respectively. The most prevalent of AMEs genes were aac (6')-Ie aph (2") (63%) followed by aph (3')-IIIa (37%). The erythromycin resistance was 45% and 41% of isolates were positive for ermB gene. The ermA gene was found in 5% of isolates whereas the ermC gene was not detected in any isolates. The prevalence of vancomycin resistant enterococci (VRE) was 12% consisting of E. faecalis (6%) and E. faecium (22%) and all of them were VanA Phenotype. The results demonstrated that AMEs, erm and van genes are common in enterococci isolated in Tehran. Furthermore our results show an increase in the rate of vancomycin resistance among enterococci isolates in Iran.  相似文献   

16.
Apramycin-modifying strains isolated from pigs with coli bacteriosis, from humans and hospital environment were studied comparatively. Production of enzymes modifying the aminoglycoside was estimated with the radioactive cofactor procedure. E. coli isolates from the animals were phenotypically resistant to apramycin and a number of other aminoglycosides. They produced acetyltransferase AAC(3)IV, phosphotransferase APH(3')(5"), APH(3") and other enzymes. Resistance of the strains to gentamicin was also conditioned by AAC(3)IV since these strains did not produce AAD(2") and AAC(6'). In the resistant strains of E. coli and their transconjugates there were detected plasmids with a relative molecular weight of 60-80 MD. Some of the belonged to the compatibility group I1, the others belonged to the compatibility group H1. Strains of S. marcescens, K. pneumoniae. K. oxytoca and S. aureus isolated from humans and hospital environment were sensitive to apramycin. Only isolates of P. aeruginosa were resistant to this antibiotic. However, all the isolates produced AAC(3)IV. Some of them additionally produced AAC(6'), an enzyme modifying amikacin, kanamycin and other antibiotics and not acetylating apramycin. Almost all the strains produced kanamycin- and streptomycin phosphotransferases. Possible coselection of strains resistant to apramycin and gentamicin using one of these aminoglycosides is discussed.  相似文献   

17.
The mechanisms of resistance to apramycin of five isolates of Escherichia coli from animals were investigated. Three isolates, which were resistant to all the aminoglycosides tested, did not transfer their resistance and did not produce aminoglycoside-modifying enzymes. The fourth isolate, which was resistant to apramycin, tobramycin, gentamicin, kanamycin and neomycin but not to amikacin, owed its resistance to production of the acetyltransferase AAC(3)IV. The gene specifying this enzyme was carried on a transposon, Tn800, on a plasmid designated R1535. The fifth isolate was resistant to apramycin, neomycin and kanamycin but not to gentamicin, tobramycin or amikacin. It produced an acetyltransferase that readily acetylated only apramycin, neomycin and paromomycin, a compound that is closely related to neomycin. Synthesis of this enzyme was specified by a chromosomal gene located near pyrD at about 20 min on the map of the E. coli K12 chromosome.  相似文献   

18.
Aminoglycoside-modifying enzymes were identified in clinical strains ofAcinetobacter calcoaceticus subsp.anitratus (Herellea vaginicola) isolated between 1971 and 1979. Resistance to kanamycin, neomycin, and lividomycin was explained by an aminoglycoside-3′-phosphotransferase enzyme. The resistance of gentamicin was due to an aminoglycoside 3N-acetyltransferase type I enzyme which had not previously been described in this species. Several strains producing both enzymes showed resistance to kanamycin, gentamicin, lividomycin, neomycin, and sisomicin and susceptibility to tobramycin and amikacin.  相似文献   

19.
Kinetic data for the 6'-aminoglycoside-modifying enzyme, AAC(6')-4, also named kanamycin acetyltransferase, have been collected for six aminoglycoside antibiotics (amikacin, gentamicin C1a, kanamycin A, neomycin B, sisomicin, and tobramycin) and three coenzymes (acetyl-CoA, n-propionyl-CoA, and n-butyryl-CoA). The initial velocity pattern using acetyl-CoA favors a ping-pong kinetic mechanism (Kia = -0.34 +/- 0.34 microM), but the pattern using n-propionyl-CoA supports a sequential one (Kia = 2.7 +/- 0.8 microM). Kinetic analyses using alternative substrates confirm the sequential mechanism and, moreover, clearly identify a random order of addition of antibiotic and coenzyme because V/K values of antibiotics varied 40-fold as the identity of the coenzyme was changed and V/K values of coenzyme varied 13-fold as the identity of the antibiotic was changed. One or both sets of values would have remained unchanged if the mechanism were either ordered sequential or ping-pong. Combining these results with structure-activity data which argue for a rapid rate of release of substrates and products relative to the rate of enzymatic turnover (Radika, K., and Northrop, D. B. (1984) Biochemistry 25, in press) establishes the kinetic mechanism as rapid equilibrium random sequential.  相似文献   

20.
The genes coding for 4 aminoglycoside-modifying enzymes AAC(6')-APH(2"), APH(3'), ANT(4') and ANT(6) were determined in 44 Slovak clinical isolates of Enterococcus faecalis with high-level resistance to gentamicin (HLGR, collection 1) and 48 E. faecalis isolates with resistance to amikacin (AR, collection 2). The occurrence of spotted genes was (collection 1 vs. collection 2): aac(6)-aph(2") 81.8 vs. 8.3 %, ant(4') 52.3 vs. 81.3 %, aph(3') 50 vs. 56.3 % and ant(6) 6.8 vs. 4.2 %, the most frequent combinations of genes in the HLGR collection were aac(6')-aph(2") + ant(4') and aac(6')-aph(2") + aph(3). In contrast, the aph(3') + ant(4') gene profile was predominant in AR isolates. None of the isolates contained all four AGME genes simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号