首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   

2.
After the application of [13C3H]-gibberellin A20 to wild-type (tall) sweet peas ( Lathyrus odoratus L.) labelled gibberellin A1 (GA1), GA8, GA29 and 2-epiGA29 were identified as major metabolities by gas chromatography-mass spectrometry after high performance liquid chromatography. By contrast in genetically comparable dwarf ( II ) plants only labelled GA29 and 2-epiGA29 were produced in significant amounts, although evidence was obtained for trace amounts of labelled GA1 and GA8. The apical portions of dwarf plants contained 8–10 times less GA1 than those of tall plants but at least as much GA20 (measured using di-deuterated internal standards). In conjunction with previous data these results strongly indicate that in genotype ll internode length is reduced and leaf growth altered by a reduction in GA1 levels attributable to a partial block in the 3β-hydroxylation of GA20 to GA1.
In contrast to dwarf plants, semidwarf plants (genotype lblb ) contained more GA1 in the apical portion than wild-type counterparts. This is consistent with the suggestion that lb alters some aspect of GA sensitivity.  相似文献   

3.
We describe a new mutation, lrs , which reduces internode length in Pisum sativum L. The mutation appears to act by reducing both GA synthesis and the response to GA1. The levels of the 13‐hydroxylated GAs, GA53, GA44, GA19, GA20, GA1, and GA8 in the lrs mutant were greatly reduced compared with the wild‐type. The extent of the reduction in GA1 content in the apical tissues would, at least in part, account for the dwarf phenotype of the mutant. The reduced GA responsiveness of the new mutant was indicated by the inability of applied GA1 to remove the difference in elongation between lrs and LRS plants. The lrs mutant appears to be unique amongst internode length genotypes, possessing characteristics of both GA synthesis and GA response mutants.  相似文献   

4.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

5.
The metabolism of GA10 is thought to be under photoperiodic control in the woody plant Salix pentandra . However, in a recent study using 16,17-[3H2]GA19 as a mimic of Ga10, no effect of photoperiod was found on its metabolism to 16,17-dihydro-GA20 and 16,17-dihydro-GA1. To investigate if this was due to differential action of exogenous 16,17-dihydro-GAs and GAs, the effects of the 16,17-dihydro-derivatives of the gibberellins GA19, GA1, and GA1 as compared with their parent GAs, on shoot elongation in seedlings of S. pentandra were studied. 16,17-Dihydro-GA19, and -GA20 were both almost inactive, while 16,17-dihydro-GA1 induced some shoot elongation in seedlings treated with ancymidol as well as under short days. GA19, GA20 and GA1 were all able to counteract the inhibitory effect of ancymidol under continuous light, while inhibition induced by a 12-h photoperiod was antagonised only by GA20 and GA1. Thus, the growth-stimulating activity of the tested GAs is significantly reduced by 16,17-dihydro derivatisation, but the derivatives do not inhibit stem elongation in S, pentandra , as has been found in monocotyledons.  相似文献   

6.
The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder ( Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA3. Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA1, GA3, GA4and GA20, in addition to the isomers 3- epi -GA1 and iso -GA3. Isotope dilution analysis indicated that epi -GA1 was an artefact. Likewise, iso -GA3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA1 was present in higher concentrations (130–150 ng ml−1) than GA3 (50–60 ng ml−1), GA4 (8–12 ng ml−1) and GA20 (2–3 ng ml−1). The data indicated that culture of both bacteria accumulate bioactive C19-gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.  相似文献   

7.
The levels of GA1, 3-epiGA1 and GA8 in genotypes Le, le and led of Pisum sativum L. were determined by gas chromatography-selected ion monitoring (GC-SIM) after feeds of [3H, 13C]-GA20 to each genotype. The levels of endogenous and [13C]-labelled metabolites were determined by reverse isotope dilution with unlabelled GA1, 3-epiGA1 and GA8. The results demonstrate a quantitative relationship between the level of GA1 and the extent of elongation both on a per plant and a per g fresh weight basis. These results are consistent with previous findings in peas and other species possessing a predominant early 13-hydroxylation pathway for GA biosynthesis.
The levels of 3-epiGA1 also decreased in the genotypic sequence Le, le, led although not as rapidly as for the level of GA1. This may suggest that the alleles at the le locus also influence the formation of 3-epiGA1.  相似文献   

8.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

9.
There is a strong relationship across the full range of gibberellin deficient, internode length genotypes ( le, lh, is, na ) between internode length in the dark and in red or white light. Further, the new, more severe allele at the le locus. Ie d, is shown to influence growth in the dark as well as in the light. These results suggest that darkeness does not specifically overcome any of the steps blocked by the gibberellin (GA) synthesis genes contrasting with the conclusions drawn by other workers. Supporting this conclusion in relation to the Ie gene are results which show that, at least at certain dosage rates, dark-grown Ie na plants respond better to GA1 than to GA20 similar to the response previously reported in light grown plants.
The greater response by plants of the nana line NGB1766 ( na ) to GA1 in the dark than in the light suggests that light may influence internode length by altering GA-sensitivity. These results are discussed in relation to previous views on the control of stem elongation by light.  相似文献   

10.
11.
Jolly, C. J., Reid, J. B. and Ross, J. J. 1987. Internode length in Pisum. Action of gene lw.
Mutant K29 of Pisum sativum L. is shown to possess a recessive gene at a new locus, lw , which results in reduced internode length, delayed flowering and increased symptoms of water congestion compared with the parental cv. Torsdag. The interaction of gene lw with the internode length genes na, le, la and cry 5 is examined. Extracts from the shoots of Iw plants are shown to contain similar levels of gibberellin (GA)-like substances to comparable Lw plants, but Iw plants do not elongate to the same extent as Lw plants when treated with GA19 GA19, or GA20. The effect of gene Iw is not graft-transmissible. Unlike essentially isogenic dwarf lines possessing the GA-synthesis genes le, Ih or Is, lw plants show a relative increase in elongation similar to Torsdag in response to photoperiod extensions from sources rich in far-red light. These results suggest that gene lw probably does not reduce elongation by influencing GA-synthesis and that the response to photoperiod extensions with far-red light may depend on the level of GA.  相似文献   

12.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

13.
Leaf and reproductive development were compared in 3 rapid cycling Brassica rapa genotypes grown for 4 weeks under greenhouse conditions. The dwarf mutant, rosette ( ros ), is gibberellin (GA)-deficient, while the tall mutant, elongated internode ( ein ), has enhanced endogenous GA levels. Germination was delayed in ros and a selection of a more severe form of ros , named dormant ( do ), has even more retarded germination and some seeds entirely fail to germinate. Seeds of do and ros respond to exogenous GA, by rapid germination.
The 3 genotypes, ros , normal and ein , displayed similar developmental sequences, although floral bud formation and subsequent floral development and anthesis were delayed in ros. Conversely, anthesis was slightly accelerated in ein . Individual leaf areas were reduced in both ros and ein relative to the normal genotype, but leaf numbers were similar in all 3 genotypes. Differences in leaf morphology (heterophylly) were also observed; the normal genotype and ein plants possessed uniform leaf shapes and relatively smooth leaf margins, although petiole length was increased in ein . The mutant ros had scalloped leaf margins and convoluted leaf blades in addition to shortened petioles. These phenotypes suggest a role for GA in the regulation of germination and reproductive and leaf development in Brassica.  相似文献   

14.
A new allele at the Lh locus has been identified in Pisum sativum L. and named lhi . This allele results in reduced GA levels in young shoots, and a dwarf phenotype. Gas chromatography-selected ion monitoring (GC-SIM) with dideuterated internal standards has been used to demonstrate a quantitative relationship between the level of endogenous GA1 and internode length using the three alleles ( Lh, lh and lhi ) at the Lh locus. These results are consistent with previous findings in peas (for alleles at the Le locus) and other species possessing a predominant early 13-hydroxylation pathway for GA biosynthesis and support the role of GA1 as the major native GA in peas with biological activity in its own right. However, in contrast to alleles at the Le locus, GA20 levels are also reduced in lh and lhi plants. The lhi allele also has possible pleiotropic effects on seed abortion, leading to a reduction in seed yield compared to plants homozygous for the previously characterised Lh or lh alleles.  相似文献   

15.
Reid, J. B. and Ross, J. J. 1988. Internode length in Pisum. Further studies on the 'micro' gene, lm . - Physiol. Plant. 72: 547–554.
In the garden pea, Pisum sativum L., gene lm confers the micro phenotype. The shoots of lm plants may be described as scaled-down versions of comparable Lm plants, with reduced internode length, leaflet size and rate of leaf expansion. However, the first phenotypic effect of gene lm is on root morphology. The gene results in curling and reduced elongation of the roots and, eventually, degeneration of the root cortex. These changes commence prior to any major visible effects in the shoot. The primary action of the lm gene does not appear to be confined to the root system, however, since epicotyl grafts between Lm and lm plants showed no graft-transmissible effects. The effects of gene lm are also apparent in dark-grown plants. Microdwarf plants ( lm le ) respond well to gibberellin A1 (GA1), but do not elongate to the same extent as dwarf ( Lm le ) plants. The two genotypes contain the same complement of GA-like substances. It is argued that gene lm is unlikely to be directly involved with GA-metabolism or the reception of the GA signal, but rather reduces the GA response by influencing some aspect of normal cell development, which results in the wide range of pleiotropic effects observed. Consequently, it may be misleading to continue to classify this gene simply as an internode length mutant.  相似文献   

16.
High temperature has been implicated as the major factor responsible for dwarfing of selected apple ( Malus domestica Borkh.) trees of a hybrid population of cv. Goldspur Delicious x cv. Redspur Delicious. Dwarf plants grew only 2.2 cm in 63 days under a ramped temperature regime (night 15°C, day ramped up to 38°C, held for 2 h and ramped down to 15°C—14 h daylength), whereas semi-dwarf plants grew 26.3 cm. At a constant 27°C (14 h daylength), both dwarf and semi-dwarf plants grew 26.3 cm. At a constant 27°C (14 h daylength), both dwarf and semi-dwarf plants grew nearly 50 cm. The gibberellin biosynthesis inhibitor, paclobutrazol, retarded growth of semi-dwarf plants in both ramped and constant environments and dwarf plants in the constant 27°C environment. It did not further reduce the size of dwarf plants growing under the ramped regime. Gibberellin (GA3) treatment reversed the inhibition of growth caused by paclobutrazol for all plants except it did not restore growth of dwarf plants in the ramped environment. These data suggest that neither pacobutrazoltreated nor untreated dwarf plants growing in the ramped environment (or in the orchard during hot summer months) are able to respond to GA3. In constrast, GA3 was utilized by the paclobutrazol-inhibited dwarf plants growing at constant 27°C, enabling shoot elongation to take place. It appears that high temperature may have caused alterations in GA target tissues in dwarf plants so that they no longer had the capacity to respond to GA.  相似文献   

17.
By application of a recently developed method allowing analysis of gibberellins (GAs) in mg amounts of tissue, the effect of photoperiod on levels of GAs in shoot tips of individual seedlings of the woody species Salix pentandra was studied. In elongating long day-grown seedlings, maximum levels of GA1 were found 5–20 mm below the apex, approximately twice the levels in other segments. After exposure of plants to 5 or 15 short days, the levels of GA1 were about 50% lower within this specific region of the stem, as compared with seedlings grown under long days. Short day-induced cessation of shoot elongation also correlated with overall declines in the levels of GA53, GA19, GA20 and GA8, Within each photoperiodic treatment the levels of these GAs were generally relatively similar throughout the upper 35 mm of stems. No differences in internode lengths or in lengths of pith or epidermal cells were found in plants grown under long days compared with those exposed to 5 short days. In both cases, cells in mitosis were observed in the subapical stem tissues of shoot tips. After 15 short days, stem elongation was completed, and dividing cells were generally not found in the subapical part of the stem. However, short day exposure did not prevent elongation of internodes and cells differentiated before the treatment was started. Thus, the localised decrease in level of GA1 in shoot tips under short days precedes the morphological and anatomical changes connected with the short day-induced cessation of elongation growth. This supports the hypothesised role for GA1 in photoperiodic control of shoot elongation in S. pentandra .  相似文献   

18.
Ross, J. J. and Reid, J. B. 1989. Internode length in Pisum. Biochemical expression of the Le gene in darkness.
The Le gene appears to be biochemically expressed in dark-grown pea ( Pisum sativum L.) plants since the previously reported difference in metabolism of [3H]-GA30 between light-grown Le and Le plants was also observed in darkness. Furthermore, both light- and dark-grown Le plants contained more endogenous GA1, -like substance than did comparable Le plants. Darkness did not appear to significantly increase the accumulation of GA1, in either Le or Le plants, although confirmation of GA1 levels by gas chromatography-selected ion monitoring is still required. The results support previous findings that the overall metabolism of [3H]-GA20, is accelerated by darkness. The evidence presented here supports previous suggestions that darkness acts on internode length by increasing some aspect of GA sensitivity.  相似文献   

19.
The regulation by phytochrome of stem elongation in light-grown plants depends on gibberellins (GAs). To investigate whether this is mediated by a change in GA metabolism, the effect of the GA biosynthesis inhibitor LAB 198 999 (an acylcyclohexadione derivative) on the end-of-day far-red (FR) response in cowpea ( Vigna sinensis L.) epicotyl explants has been investigated. Growth of epicotyl explants of light-grown seedlings was enhanced when treated with far-red light before incubation in the dark (end-of-day FR effect). Low doses of LAB 198 999 (0.05 and 0.5 μg explant−1) reduced the effect of FR, whereas 5 to 50 μg explant−1 stimulated elongation of both red light (R)- and FR-treated epicotyl explants while nullifying the differences between R and FR treatments. In paclobutrazol-treated epicotyl explants, FR enhanced the response to applied GA1 and GA20, whereas LAB 198 999 increased the activity of GA1 and decreased that of GA20, [3H]Gibberellin A1, injected into the basal part of the epicotyl, was transported and metabolized mainly to [3H]GA8 in the apical 20 mm of the epicotyl. The conversion of [3H]GA1 to [3H]GA8 was dramatically reduced by both end-of-day FR treatments and LAB 198 999 applications. In addition, both treatments enhanced epicotyl elongation. It is proposed that the regulation of cowpea epicotyl growth by phytocrome is mediated, at least partially, by modifying GA1 degradation.  相似文献   

20.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4, GA7, and GA9 while smaller amounts of GA1, GA3 and putative GA9-glucosyl ester were also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号