首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

2.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

3.
Helical apolipoproteins of high density lipoprotein (HDL) remove phospholipid and cholesterol from cells and generate HDL particles being mediated by ATP binding cassette transporter A1 (ABCA1). In murine macrophage cell line RAW264 cells, cAMP induced expression of ABCA1, release of cellular phospholipid and cholesterol by apolipoprotein A-I (apoA-I), and reversible binding of apoA-I to the cell. The apoA-I-dependent lipid release was directly proportional to the cAMP-induced binding of apoA-I, and was inhibited 70% by a monoclonal antibody selective to lipid-free apoA-I, 725-1E2. In contrast, apparent cellular cholesterol release to HDL was substantial even without ABCA1 induction, and it was increased only by 27% after the cAMP treatment. The antibody inhibited this increment by 70%. Lipid-free apoA-II liberated apoA-I from HDL by displacement and thereby markedly expanded the cAMP-induced part of the cholesterol release to the HDL-containing medium, and the antibody inhibited this part also by 70%. Binding experiments of the double-labeled reconstituted HDL showed that cAMP induced reversible binding of apoA-I but not the association of cholesteryl ester with the cells. The effect of the antibody on the cellular cholesterol release to the reconstituted HDL was similar to that of the HDL-mediated release. The data implicated that the ABCA1-dependent cholesterol release to HDL is mediated by apoA-I dissociated from HDL.  相似文献   

4.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of prebeta HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between alpha and prebeta. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

5.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of preβ HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between α and preβ. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

6.
ATP binding cassette transporter A1 (ABCA1) mediates the transport of phospholipids and cholesterol from cells to lipid-poor HDL apolipoproteins. Cholesterol loading of cells induces ABCA1, implicating cholesterol as its major physiologic substrate. It is believed, however, that ABCA1 is primarily a phospholipid transporter and that cholesterol efflux occurs by diffusion to ABCA1-generated phospholipid-rich apolipoproteins. Here we show that overexpression of ABCA1 in baby hamster kidney cells in the absence of apolipoproteins redistributed membrane cholesterol to cell-surface domains accessible to treatment with the enzyme cholesterol oxidase. The cholesterol removed by apolipoprotein A-I (apoA-I), but not by HDL phospholipids, was derived exclusively from these domains. ABCA1 overexpression also increased cholesterol esterification, which was prevented by addition of apoA-I, suggesting that some of the cell-surface cholesterol not removed by apolipoproteins is transported to the intracellular esterifying enzyme acyl-CoA:cholesterol acyltransferase. ABCA1 expression was essential for cholesterol efflux even when apolipoproteins had already acquired phospholipids during prior exposure to ABCA1-expressing cells.These studies show that ABCA1 redistributes cholesterol to cell-surface domains, where it becomes accessible for removal by apolipoproteins, consistent with a direct role of ABCA1 in cholesterol transport.  相似文献   

7.
Phospholipid lipid transfer protein (PLTP) is ubiquitously expressed in animal tissues and plays multiple roles in lipoprotein metabolism, but the function of peripheral PLTP is still poorly understood. Here we show that one of its possible functions is to transport cholesterol and phospholipids from cells to lipoprotein particles by a process involving PLTP interactions with cellular ATP-binding cassette transporter A1 (ABCA1). When ABCA1 was induced in murine macrophages or ABCA1-transfected baby hamster kidney cells, PLTP gained the ability to promote cholesterol and phospholipid efflux from cells. Although PLTP alone had lipid efflux activity, its maximum activity was observed in the presence of high density lipoprotein particles. Pulsechase studies showed that the interaction of PLTP with ABCA1-expressing cells played a role in promoting lipid efflux. Overexpression of ABCA1 dramatically increased binding of both PLTP and apoA-I to common sites on the cell surface. Both PLTP and apoA-I were covalently cross-linked to ABCA1, each protein blocked cross-linking of the other, and both PLTP and apoA-I stabilized ABCA1 protein. These results are consistent with PLTP and apoA-I binding to ABCA1 at the same or closely related sites. Thus, PLTP mimics apolipoproteins in removing cellular lipids by the ABCA1 pathway, except that PLTP acts more as an intermediary in the transfer of cellular lipids to lipoprotein particles.  相似文献   

8.
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.  相似文献   

9.
ATP-binding cassette transporter A1 (ABCA1) mediates transport of cellular cholesterol and phospholipids to high density lipoprotein (HDL) apolipoproteins, such as apoA-I. ABCA1 mutations can cause a severe HDL deficiency and atherosclerosis. Here we show that the protein-tyrosine kinase (TK) Janus kinase 2 (JAK2) modulates the apolipoprotein interactions with ABCA1 required for removing cellular lipids. The protein kinase A (PKA) inhibitor H89, the TK inhibitor genistein, and the JAK2 inhibitor AG490 suppressed apoA-I-mediated cholesterol and phospholipid efflux from ABCA1-expressing cells without altering the membrane ABCA1 content. Whereas PKA inhibition had no effect on apoA-I binding to cells or to ABCA1, TK and JAK2 inhibition greatly reduced these activities. Conversely, PKA but not JAK2 inhibition significantly reduced the intrinsic cholesterol translocase activity of ABCA1. Mutant cells lacking JAK2 had a severely impaired apoA-I-mediated cholesterol and phospholipid efflux and apoA-I binding despite normal ABCA1 protein levels and near normal cholesterol translocase activity. Thus, although PKA modulates ABCA1 lipid transport activity, JAK2 appears to selectively modulate apolipoprotein interactions with ABCA1. TK-mediated phosphorylation of ABCA1 was undetectable, implicating the involvement of another JAK2-targeted protein. Acute incubation of ABCA1-expressing cells with apoA-I had no effect on ABCA1 phosphorylation but stimulated JAK2 autophosphorylation. These results suggest that the interaction of apolipoproteins with ABCA1-expressing cells activates JAK2, which in turn activates a process that enhances apolipoprotein interactions with ABCA1 and lipid removal from cells.  相似文献   

10.
A key cardioprotective effect of high-density lipoprotein involves the interaction of its major protein, apolipoprotein A-I (apoA-I) with ATP-binding cassette transporter A1 (ABCA1), a macrophage cholesterol exporter. ApoA-I is thought to remove cholesterol from macrophages by a cascade of events. First it binds directly to ABCA1, activating signaling pathways, and then it binds to and solubilizes lipid domains generated by ABCA1. HDL isolated from human atherosclerotic lesions and blood of subjects with established coronary artery disease contains elevated levels of 3-chlorotyrosine and 3-nitrotyrosine, two characteristic products of myeloperoxidase (MPO), a heme protein secreted by macrophages. Here we show that chlorination (but not nitration) of apoA-I by the MPO pathway impairs its ability to interact directly with ABCA1, to activate the Janus kinase 2 signaling pathway, and to promote efflux of cellular cholesterol. In contrast, oxidation of apoA-I has little effect on its ability to stabilize ABCA1 protein or to solubilize phospholipids. Our results indicate that chlorination of apoA-I by the MPO pathway selectively inhibits two critical early events in cholesterol efflux: (1) the binding of apoA-I to ABCA1 and (2) the activation of a key signaling pathway. Therefore, oxidation of apoA-I in the artery wall by MPO-generated chlorinating intermediates may contribute to atherogenesis by impairing cholesterol efflux from macrophages.  相似文献   

11.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used for a detailed analysis of cellular phospholipid and cholesterol efflux in free cholesterol (FC) loaded human primary fibroblasts and human monocyte-derived macrophages (HMDM) loaded with enzymatically modified LDL (E-LDL). Although both cell models differed significantly in their cellular lipid composition, a higher apoA-I specific efflux was found for monounsaturated phosphatidylcholine (PC) species together with a decreased contribution of polyunsaturated PC species in both cell types. Moreover, medium chain sphingomyelin (SPM) species SPM 14:0 and SPM 16:1 were translocated preferentially to apoA-I in both cell types. In contrast to fibroblasts, HMDM displayed a considerable proportion of cholesteryl esters (CE) in basal and apoA-I specific efflux media, most likely due to secretion of CE associated to apoE. Analysis of HDL(3) mediated lipid efflux from HMDM using D(9)-choline and (13)C(3)-FC stable isotope labeling revealed significantly different D(9)-PC and D(9)-SPM species pattern for apoA-I and HDL(3) specific efflux media, which indicates a contribution of distinct cellular phospholipid pools to apoA-I and HDL(3) mediated efflux. Together with a partial loading of fibroblasts and HMDM with HDL(3)-derived CE species, these data add further evidence for retroendocytosis of HDL. In summary, analysis of apoA-I/ABCA1 and HDL(3) mediated lipid efflux by ESI-MS/MS demonstrated a preferential efflux of monounsaturated PC and medium chain SPM to apoA-I. Moreover, this is the first study, which provides evidence for distinct cellular phospholipid pools used for lipid transfer to apoA-I and HDL(3) from the analysis of phospholipid species pattern in HMDM.  相似文献   

12.
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux.  相似文献   

13.
ABCA1 exports cholesterol and phospholipids from cells by a multistep pathway that involves forming cell surface lipid domains, solubilizing these lipids by apolipoproteins, binding of apolipoproteins to ABCA1, and activating signaling processes. Here we used a mutational analysis approach to evaluate the relationship between these events. We prepared seven naturally occurring mutants and one artificial missense mutant of ABCA1 with varying degrees of impaired function, expressed them to similar levels as wild-type ABCA1 on the cell surface of BHK cells, and measured ABCA1-dependent lipid export, apolipoprotein A-I (apoA-I) binding, and signaling activities. Linear regression analyses showed that cholesterol and phospholipid efflux and cellular apoA-I binding correlated significantly with the ability of ABCA1 to form cell surface lipid domains. Lipid export and cellular apoA-I binding activities and formation of lipid domains also correlated with the amount of apoA-I that could be cross-linked to ABCA1. Moreover, each of these lipid export and apoA-I binding activities correlated with apoA-I-induced Janus kinase 2 (JAK2) activation. Thus, these missense mutations in ABCA1 impair lipid export, apoA-I binding, and apoA-I-stimulated JAK2 activities to similar extents, indicating that these processes are highly interactive components of a pathway that functions to export lipids from cells.  相似文献   

14.
15.
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.  相似文献   

16.
Lipid-poor high density lipoprotein apolipoproteins remove cholesterol and phospholipids from cells by an active secretory pathway controlled by an ABC transporter called ABCA1. This pathway is induced by cholesterol and cAMP analogs in a cell-specific manner. Here we provide evidence that increased plasma membrane ABCA1 accounts for the enhanced apolipoprotein-mediated lipid secretion from macrophages induced by cAMP analogs. Treatment of RAW264 macrophages with 8-bromo-cAMP caused parallel increases in apoA-I-mediated cholesterol efflux, ABCA1 mRNA and protein levels, incorporation of ABCA1 into the plasma membrane, and binding of apoA-I to cell-surface ABCA1. All of these parameters declined to near base-line values within 6 h after removal of 8-bromo-cAMP, indicating that ABCA1 is highly unstable and is degraded rapidly in the absence of inducer. Thus, ABCA1 is likely to be the cAMP-inducible apolipoprotein receptor that promotes removal of cholesterol and phospholipids from macrophages.  相似文献   

17.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

18.
19.
Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1   总被引:11,自引:0,他引:11  
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?  相似文献   

20.
Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain   总被引:1,自引:0,他引:1  
ABCA1 is a cholesterol transporter that is widely expressed throughout the body. Outside the central nervous system (CNS), ABCA1 functions in the biogenesis of high-density lipoprotein (HDL), where it mediates the efflux of cholesterol and phospholipids to apolipoprotein (apo) A-I. Deficiency of ABCA1 results in lack of circulating HDL and greatly reduced levels of apoA-I. ABCA1 is also expressed in cells within the CNS, but its roles in brain lipid metabolism are not yet fully understood. In the brain, glia synthesize the apolipoproteins involved in CNS lipid metabolism. Here we demonstrate that glial ABCA1 is required for cholesterol efflux to apoA-I and plays a key role in facilitating cholesterol efflux to apoE, which is the major apolipoprotein in the brain. In both astrocytes and microglia, ABCA1 deficiency reduces lipid efflux to exogenous apoE. The impaired ability to efflux lipids in ABCA1-/- glia results in lipid accumulation in both astrocytes and microglia under normal culture conditions. Additionally, apoE secretion is compromised in ABCA1-/- astrocytes and microglia. In vivo, deficiency of ABCA1 results in a 65% decrease in apoE levels in whole brain, and a 75-80% decrease in apoE levels in hippocampus and striatum. Additionally, the effect of ABCA1 on apoE is selective, as apoJ levels are unchanged in brains of ABCA1-/- mice. Taken together, these results show that glial ABCA1 is a key influence on apoE metabolism in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号