首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis is believed to be mostly self-pollinated, although several lines of genetic and morphological evidence indicate that insect-mediated outcrossing occurs with at least a low frequency in wild populations. Here, we show that Arabidopsis flowers emit both monoterpenes and sesquiterpenes, potential olfactory cues for pollinating insects. Of the 32 terpene synthase genes in the Arabidopsis genome, 20 were found to be expressed in flowers, 6 of these exclusively or almost exclusively so. Two terpene synthase genes expressed exclusively in the flowers and one terpene synthase gene expressed almost exclusively in the flowers were characterized and found to encode proteins that catalyze the formation of major floral volatiles. A beta-glucuronidase fusion construct with a promoter of one of these genes demonstrated that gene expression was restricted to the sepals, stigmas, anther filaments, and receptacles, reaching a peak when the stigma was receptive to cross pollen. The observation that Arabidopsis flowers synthesize and emit volatiles raises intriguing questions about the reproductive behavior of Arabidopsis in the wild and allows detailed investigations of floral volatile biosynthesis and its regulation to be performed with this model plant system.  相似文献   

2.
The Arabidopsis thaliana genome contains at least 32 terpenoid synthase (AtTPS) genes [Aubourg et al., Mol. Genet. Genom. 267 (2002) 730] a few of which have recently been characterized. Based on hierarchical cluster analysis of AtTPS gene expression, measured by microarray profiling and validated with published expression data, we identified two groups of predominantly root expressed AtTPS genes containing five members with previously unknown biochemical functions (At4g13280, At4g13300, At5g48110, At1g33750, and At3g29410). Among the root expressed AtTPS genes, a pair of tandem-organized genes, At4g13280 (AtTPS12) and At4g13300 (AtTPS13), shares 91% predicted amino acid identity indicating recent gene duplication. Bacterial expression of cDNAs and enzyme assays showed that both At4g13280 and At4g13300 encode sesquiterpene synthases catalyzing the conversion of farnesyl diphosphate to (Z)-gamma-bisabolene and the additional minor products E-nerolidol and alpha-bisabolol. Expression of beta-glucuronidase (GUS) reporter gene fused to upstream genomic regions of At4g13280 or At4g13300 showed constitutive promoter activities in the cortex and sub-epidermal layers of Arabidopsis roots. In addition, highly localized promoter activities were found in leaf hydathodes and flower stigmata. Mechanical wounding of Arabidopsis leaves induced local expression of At4g13280 and At4g13300. The functional characterization of At4g13280 gene product AtTPS12 and At4g13230 gene product AtTPS13 as (Z)-gamma-bisabolene synthases, together with the recent characterization of two flower-specific AtTPS [At5g23960 and At5g44630; Tholl et al., Plant J. 42 (2005) 757], concludes the biochemical functional annotation of all four predicted Arabidopsis sesquiterpene synthase genes. Our data suggest biological functions for At4g13280 and At4g13300 in the rhizosphere with additional roles in aerial plant tissues.  相似文献   

3.
The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.  相似文献   

4.
Kiwifruit species are vigorously growing dioecious vines that rely on bees and other insects for pollen transfer between spatially separated male and female individuals. Floral volatile terpene cues for insect pollinator attraction were characterized from flowers of the most widely grown and economically important kiwifruit cultivar Actinidia deliciosa ‘Hayward’ and its male pollinator ‘Chieftain’. The sesquiterpenes α-farnesene and germacrene D dominated in all floral tissues and the emission of these compounds was detected throughout the day, with lower levels at night. Two terpene synthase (TPS) genes were isolated from A. deliciosa petals that produced (+)-germacrene D and (E,E)-α-farnesene respectively. Both TPS genes were expressed in the same tissues and at the same times as their corresponding floral volatiles. Here we discuss these results with respect to plant and insect ecology and the evolution and structure of sesquiterpene synthases.Key words: terpene, dioecy, kiwifruit, volatile, ecology, evolution, flower  相似文献   

5.
Rice plants fed on by fall armyworm ( Spodoptera frugiperda , FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris . Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase ( TPS ) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S- linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.  相似文献   

6.
7.
Pogostemon cablin (patchouli), like many plants within the Lamiaceae, accumulates large amounts of essential oil. Patchouli oil is unique because it consists of over 24 different sesquiterpenes, rather than a blend of different mono-, sesqui- and di-terpene compounds. To determine if this complex mixture of sesquiterpenes arises from an equal number of unique sesquiterpene synthases, we developed a RT-PCR strategy to isolate and functionally characterize the respective patchouli oil synthase genes. Unexpectedly, only five terpene synthase cDNA genes were isolated. Four of the cDNAs encode for synthases catalyzing the biosynthesis of one major sesquiterpene, including a gamma-curcumene synthase, two germacrene D synthases, and a germacrene A synthase. The fifth cDNA encodes for a patchoulol synthase, which catalyzes the conversion of FPP to patchoulol plus at least 13 additional sesquiterpene products. Equally intriguing, the yield of the different in vitro reaction products resembles quantitatively and qualitatively the profile of sesquiterpenes found in patchouli oil extracted from plants, suggesting that a single terpene synthase is responsible for the bulk and diversity of terpene products produced in planta.  相似文献   

8.
9.
10.
Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003-1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-beta-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance.  相似文献   

11.
Sorghum (Sorghum bicolor) plants damaged by insects emit a blend of volatiles, predominantly sesquiterpenes, that are implicated in attracting natural enemies of the attacking insects. To characterize sesquiterpene biosynthesis in sorghum, seven terpene synthase (TPS) genes, SbTPS1 through SbTPS7, were identified based on their evolutionary relatedness to known sesquiterpene synthase genes from maize and rice. While SbTPS6 and SbTPS7 encode truncated proteins, all other TPS genes were determined to encode functional sesquiterpene synthases. Both SbTPS1 and SbTPS2 produced the major products zingiberene, β-bisabolene and β-sesquiphellandrene, but with opposite ratios of zingiberene to β-sesquiphellandrene. SbTPS3 produced (E)-α-bergamotene and (E)-β-farnesene. SbTPS4 formed (E)-β-caryophyllene as the major product. SbTPS5 produced mostly (E)-α-bergamotene and (Z)-γ-bisabolene. Based on the genome sequences of sorghum, maize and rice and the sesquiterpene synthase genes they contain, collinearity analysis identified the orthologs of sorghum sesquiterpene synthase genes, except for SbTPS4, in maize and rice. Phylogenetic analysis implied that SbTPS1, SbTPS2 and SbTPS3, which exist as tandem repeats, evolved as a consequence of local gene duplication in a lineage-specific manner. Structural modeling and site-directed mutagenesis experiments revealed that three amino acids in the active site play critical roles in defining product specificity of SbTPS1, SbTPS2, SbTPS3 and their orthologs in maize and rice. The naturally occurring functional variations of sesquiterpene synthases within and between species suggest that multiple mechanisms, including lineage-specific gene duplication, subfunctionalization, neofunctionalization and pseudogenization of duplicated genes, have all played a role in the dynamic evolution of insect-induced sesquiterpene biosynthesis in grasses.  相似文献   

12.
Terpenoid metabolism in wild-type and transgenic Arabidopsis plants   总被引:13,自引:0,他引:13       下载免费PDF全文
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.  相似文献   

13.
A new mutant with disturbed cell differentiation and severely altered plant morphology was obtained by visual screening of a T-DNA mutagenized population of Arabidopsis thaliana. The T-DNA in this mutant was inserted in an unknown gene (ORF At5g46700) located on chromosome V. This gene and additional 12 genes in the Arabidopsis genome show structural homologies to a class of abundantly expressed mammalian proteins with four transmembrane domains (TM4) called tetraspanins. In animals tetraspanins are involved in different cell functions like cell development, adhesion, motility, and differentiation, probably by organizing other proteins into a network of multimolecular membrane microdomains, called the tetraspanin web. So far no function for tetraspanins in plants has been described. Here, we show that a mutation in the TM4-like gene EKEKO results in severe developmental defects that could be the result of incorrect regulation of cell differentiation.  相似文献   

14.
15.
16.
17.
After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (−)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling.  相似文献   

18.
Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号