首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
NMR titration curves are reported for the 4 histidine residues of ribonuclease A in sodium acetate and for ribonuclease S in sodium acetate, phosphate, and sulfate solutions. Evidence is presented that the imidazole side chain of histidine residue 48 undergoes a conformational change, probably also involving the carboxyl side chain of aspartic acid residue 14. This group is considered to be responsible for the low pH inflection with pKa 4.2 present in the NMR titration curve of the C-2 proton resonance of histidine 48. The NMR titration curves of the active site histidine residues 12 and 119 also exhibit inflections at low pH values, although there is no carboxyl group within 9 A of the imidazole side chain of histidine residue 12 in the structure of ribonuclease S determined by x-ray crystallography (Wyckoff, H. W., Tsernoglou, D., Hanson, A. W. Knox, J. R., Lee, B., and Richards, F. M. (1970) J. Biol. Chem. 245, 305-328). Curve fitting was carried out on 11 sets of NMR titration data using a model in which the 3 histidine residues 12, 119, and 48 are assumed to be affected by a common carboxyl group. The results obtained indicate that such a model with fewer parameters gives as good a representation of the data as the model in which each histidine residue is assumed to interact separately with a different carboxyl group. Therefore, it is concluded that the ionization of aspartic acid residue 14 is indirectly experienced by the active site histidine residues through the conformational change at histidine 48. A model assuming mutual interaction of the active site histidine residues does not account for the low pH inflections in these curves.  相似文献   

2.
The ionization state of aspartate 26 in Lactobacillus casei dihydrofolate reductase has been investigated by selectively labeling the enzyme with [13Cgamma] aspartic acid and measuring the 13C chemical shifts in the apo, folate-enzyme, and dihydrofolate-enzyme complexes. Our results indicate that no aspartate residue has a pKa greater than approximately 4.8 in any of the three complexes studied. The resonance of aspartate 26 in the dihydrofolate-enzyme complex has been assigned by site-directed mutagenesis; aspartate 26 is found to have a pKa value of less than 4 in this complex. Such a low pKa value makes it most unlikely that the ionization of this residue is responsible for the observed pH profile of hydride ion transfer [apparent pKa = 6.0; Andrews, J., Fierke, C. A., Birdsall, B., Ostler, G., Feeney, J., Roberts, G. C. K., and Benkovic, S. J. (1989) Biochemistry 28, 5743-5750]. Furthermore, the downfield chemical shift of the Asp 26 (13)Cgamma resonance in the dihydrofolate-enzyme complex provides experimental evidence that the pteridine ring of dihydrofolate is polarized when bound to the enzyme. We propose that this polarization of dihydrofolate acts as the driving force for protonation of the electron-rich O4 atom which occurs in the presence of NADPH. After this protonation of the substrate, a network of hydrogen bonds between O4, N5 and a bound water molecule facilitates transfer of the proton to N5 and transfer of a hydride ion from NADPH to the C6 atom to complete the reduction process.  相似文献   

3.
The mechanism of inhibition of protein--nucleic acid complex formation by polymeric aurintricarboxylic acid (ATA) was investigated by proton magnetic resonance spectroscopy. The approach was the synthesis of totally deuterated ATA, followed by a 100-MHz proton magnetic resonance study of its interaction with bovine pancreatic ribonuclease A (RNase), a model nucleic acid binding protein. The binding of ATA to RNase elicited chemical shift changes and line broadening in the C(2)--H resonances of histidyl residues 12 and 119, both of which are located in the active site, whereas that of histidyl residue 105, which resides on the exterior of the protein structure, is unaffected. (Histidyl residue 48 is not observed under our conditions except at high pH.) The epsilon-methylene protons of the lysyl side chains were also broadened upon the binding of ATA. Polymeric ATA displaces cytidine 2'-monophosphate and cytidine 3'-monophosphate from the active site of the enzyme as revealed by nuclear magnetic resonance spectroscopy. These observations suggest that the mechanism of action of ATA involves competition between the nucleic acid and the polymeric ATA for binding in the active site of the protein. Electron spin resonance spectroscopy reveals that polymeric ATA is a stable free radical, thus accounting for the major line broadening effect upon binding to protein. This finding may provide a powerful means of probing the nucleic acid binding site of proteins by proton magnetic resonance spectroscopy.  相似文献   

4.
The ribonuclease A derivative Npi-[13C1]carboxymethyl-histine-119 ribonuclease prepared by using [13C1]bromoacetate as alkylating reagent has been investigated with high resolution 13C NMR spectroscopy. In the 13C NMR spectra two carbon resonances of relatively high intensity appear which can be assigned to carboxyl groups attached to His-119 and Met-30, their intensity ratio being 10 : 1. The pH dependence of the carbon resonance of the carboxy-methyl group bound to the Npi of His-119 differs in the absence and presence of Cyd-2'-P, thus indicating that the catalytically inactive derivative does bind nucleotides. A mechanism of the alkylation reaction at pH 5.6 is proposed in which the epsilon-amino group of Lys-41 acts as the binding site for the carboxyl group of bromoacetate pushing the bromomethylene group towards the Npi of His-119 or the Ntau of His-12.  相似文献   

5.
F G Walz 《Biochemistry》1977,16(21):4568-4571
Low-pH-induced difference spectra for ribonuclease T1, which were determined using a reference solution at pH 6, consisted of a shorter wavelength component from 270 to 285 nm that relfected an ionization having a pKa of 3.54 and a longer wavelength component above 285 nm that reflected an ionization having a pKa of 4.29. The temperature dependence of the pKa value for data at 300 nm is consistent with its representing the dissociation of a carboxyl group. In addition, the pKa determined at this wavelength significantly decreased at lower ionic strength. Similar experiments which were conducted using catalytically inactive gamma-carboxymethyl-Glu-58-ribonuclease T1 gave difference spectra having only the shorter wavelength component and were characterized by a single pKa of 3.53. It is concluded that the longer wavelength component of the difference spectra is due to the ionization of Glu-58. The pKa determined for this residue in the present study agrees with one found previously from kinetic studies which supports a role for Glu-58 in catalysis. Furthermore, the results suggest a model for the interaction of Glu-58 with histidine and tryptophan residues at the active site.  相似文献   

6.
The 11-cis-retinal binding site of rhodopsin is of great interest because it is buried in the membrane but yet must provide an environment for charged amino acids. In addition, the active-site lysine residue must be able to engage in rapid Schiff base formation with 11-cis-retinal at neutral and lower pH values. This requires that this lysine be unprotonated. We have begun to study the environment of the active-site lysine using a reporter group adducted to it. Non-active-site permethylated opsin was reacted with 5-nitrosalicylaldehyde, and the resulting Schiff base was permanently fixed by borohydride reduction. The stoichiometry of incorporation was one. This chromophoric and pH-sensitive reporter group affords information on the active-site environment of rhodopsin by determining the ionization constants of its ionizable groups at different pH values. The pH titration of the modified protein showed a single pKa = 7.8 +/- 0.19 ascribable to the ionization of the phenol. The ionization of the modified lysine residue was not observed at all pH values studied. These studies are interpreted to mean that a negatively charged amino acid is propinquous to the active-site lysine residue and that this latter residue does not have an unusually low pKa.  相似文献   

7.
The A domain of the mannitol-specific EII, IIAmtl, was subcloned and proven to be functional in the isolated form (Van Weeghel et al., 1991). It contains a histidine phosphorylation site, the first of two phosphorylation sites in the parent protein. In this paper, we describe the characterization of the three histidine residues in IIAmtl with respect to their protonation and hydrogen bonding state, using 1H[15N] heteronuclear NMR techniques and protein selectively enriched with [delta 1,epsilon 2-15N]histidine. The active site residue has a low pKa (less than 5.8) and shows no hydrogen bond interactions. The proton in the neutral ring is located at the N epsilon 2 position, which also proved to be the site of phosphorylation. The phosphorylation raises the pKa of the active site histidine considerably but does not change the hydrogen bond situation. The other two histidine residues, one of which is probably located on the surface of the protein, were also characterized. Both show hydrogen bond interactions in the unphosphorylated protein, but these are disturbed by the phosphorylation process. These observations, combined with small changes in pKa and titration behavior, indicate that the IIAmtl changes its conformation upon phosphorylation.  相似文献   

8.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3619-3626
The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. 13C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by 13C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both 13C and 15N. The carbonyl region of the natural-abundance 13C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pKa of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1H NMR spectroscopy of the isotropically shifted signals in cobalt carboxypeptidase, CoCPD, permits a direct and selective detection of protons belonging to the residues liganded to the metal. The chemical shift of these protons in the free enzyme and enzyme-inhibitor complexes with changing pH monitors the state of ionization of the ligands directly and of other residues in the active center indirectly. The 1H NMR spectrum of CoCPD at pH 6 shows three well-resolved isotropically shifted signals in the downfield region at 62 (a), 52 (c), and 45 (d) ppm which have been assigned to the NH proton of His-69 and to the C-4 H's of His-69 and His-196, respectively. Titration of signal a with pH is characterized by a pKa of 8.8 which is identical to that seen in prior electronic absorption and kinetic studies. The fact that the signal reflecting the NH of His-69 is still observed at pH 10 and no major shifts occur for the signals reflecting the C-4 H's indicates the alkaline pKa in carboxypeptidase A catalysis, pKEH, cannot be ascribed to ionization of the histidyl NH of either His-69 or His-196. Binding of L-Phe shifts this pKa to 7.7 while not greatly perturbing the downfield 1H NMR signals that reflect the ligation shell of the cobalt coordination sphere. These results indicate the pKa of 8.8 in CoCPD and the pKa of 7.7 in the CoCPD.L-Phe adduct reflect ionization of the same group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
P V Prasad  Y Hatefi 《Biochemistry》1986,25(9):2459-2464
Data presented in this paper suggest that D-(-)-beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains an essential carboxyl group and an essential histidyl residue at or near the active site. Lactate and malate dehydrogenases, which catalyze reactions analogous to that catalyzed by BDH, also contain an aspartyl and a histidyl residue at the active site [Birktoft, J.J., & Banaszak, L.J. (1983) J. Biol. Chem. 258, 472-482]. In addition, all three enzymes contain an essential arginyl residue, apparently concerned with electrostatic interaction with their respective carboxylic acid substrates, and promote ternary adduct formation involving the enzyme, NAD, and sulfite.  相似文献   

11.
Apoenzyme samples of aspartate aminotransferase (AspAT) purified from the cytosolic fraction of pig heart were reconstituted with [4'-13C]pyridoxal 5'-phosphate (pyridoxal-P). The 13C NMR spectra of AspAT samples thus generated established the chemical shift of 165.3 ppm for C4' of the coenzyme bound as an internal aldimine with lysine 258 of the enzyme at pH 5. In the absence of ligands the chemical shift of C4' was shown to be pH dependent, shifting 5 ppm upfield to a constant value of 160.2 ppm above pH 8, the resulting pKa of 6.3 in agreement with spectrophotometric titrations. The addition of the competitive inhibitor succinate to the internal aldimine raises the pKa of the imine to 7.8, consistent with the theory of charge neutralization in the active site. In the presence of saturating concentrations of 2-methylaspartic acid the C4' signal of the coenzyme was shown to be invariant with pH and located at 162.7 ppm, midway between the observed chemical shifts of the protonated and unprotonated forms of the internal aldimine. The intermediate chemical shift of the external aldimine complex is thought to reflect the observation of an equilibrium mixture composed of roughly equal populations of the protonated ketoenamine and a dipolar anion species, corresponding to their respective spectral bands at 430 and 360-370 nm. Conversion to the pyridoxamine form was accomplished via reaction of the internal aldimine with L-cysteinesulfinate or by reduction with sodium borohydride, and the resulting C4' chemical shifts were identified by difference spectroscopy. Finally, the line widths of the C4' resonance under the various conditions were measured and qualitatively compared. The results are discussed in terms of the current mechanism and molecular models of the active site of AspAT.  相似文献   

12.
Sicinska W  Westler WM  DeLuca HF 《Proteins》2005,61(3):461-467
Binding sites in the full-length, ligand-binding domain of rat vitamin D receptor (LBD-rVDR) for an active hormone derived from vitamin D (1alpha,25-dihydroxyvitamin D(3)) and three of its C-2 substituted analogs were compared by nuclear magnetic resonance (NMR) spectroscopy. Specific residue labeled with [UL]-(15)N(2) Trp allowed assignment of the side-chain H(epsilon1) and N(epsilon1) resonances of the single tryptophan residue at position 282 in LBD-rVDR. Comparison of (1)H[(15)N] Heteronuclear Single Quantum Correlation (HSQC) spectra of apo and holo LBD-rVDR revealed that the position of the Trp282 H(epsilon1) and N(epsilon1) signals are sensitive to the presence of the ligand in the receptor cavity. Binding of the ligands to LBD-rVDR results in a shift of both Trp H(epsilon1) and N(epsilon1) resonances to lower frequencies. The results indicate that the interaction between the ligands and Trp282 is not responsible for differences in calcemic activity observed in vitamin D analogs.  相似文献   

13.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.  相似文献   

14.
One of the four titrating histidine ring C-2 proton resonances of bovine pancreatic ribonuclease has been assigned to histidine residue 12. This was accomplished by a direct comparison of the rate of tritium incorporation into position C-2 of histidine 12 of S-peptide (residues 1 to 20) derived from ribonuclease S, with the rates of deuterium exchange of the four histidine C-2 proton resonances of ribonuclease S under the same experimental conditions. The same assignment was obtained by a comparison of the NMR titration curves of ribonuclease S, the noncovalent complex of S-peptide and S-protein (residues 21 to 124) with the results for the recombined complex in which position C-2 of histidine 12 was fully deuterated. The second active site histidine resonance was assigned to histidine residue 119 by consideration of the NMR titration results fro carboxymethylated histidines and 1-carboxymethylhistidine 119 ribonuclease. This assignment is a reversal of that originally reported, and has important implications for the interpretation of NMR titration data of ribonuclease.  相似文献   

15.
The structure of the retinal chromophore about the C = N and C14-C15 bonds in bacteriorhodopsin's M412 intermediate has been determined by analyzing resonance Raman spectra of 2H and 13C isotopic derivatives. Normal mode calculations on 13-cis-retinal Schiff bases demonstrate that the C15-D rock and N-CLys stretch are strongly coupled for C = N-syn chromophores and weakly coupled for C = N-anti chromophores. When the Schiff base geometry is anti, the C15-D rock appears as a localized resonance Raman active mode at approximately 980 cm-1, which is moderately sensitive to 13C substitution at positions 14 and 15 (approximately 7 cm-1) and insensitive to 13C substitution at the epsilon position of lysine. When the Schiff base geometry is syn, in-phase and out-of-phase combinations of the C15-D rock and N-CLys stretch are predicted at approximately 1060 and approximately 910 cm-1, respectively. The in-phase mode is more sensitive to 13C substitution at positions 14 and 15 (approximately 15 cm-1) and at the epsilon position of lysine (approximately 4 cm-1). Calculations and comparison with experimental data on dark-adapted bacteriorhodopsin indicate that the in-phase mode at approximately 1060 cm-1 carries the majority of the resonance Raman intensity. M412 exhibits a C15-D rock at 968 cm-1 that shifts 8 cm-1 when 13C is added at positions 14 and 15 and is insensitive to 13C substitution at the epsilon-position of lysine. This demonstrates that M412 contains a C = N-anti Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
13C NMR is used to detect ionizations within a trypsin-chloromethyl ketone inhibitor complex. The pKa values observed are compared with those predicted by free-energy relationships. For the denatured/autolyzed inhibitor complex, a pKa = 5.26 is observed, which is assigned to the ionization of the imidazole of histidine-57. For the intact inhibitor complex a pKa = 7.88 is determined. This pKa is assigned to the ionization of the hemiketal hydroxyl (pKa = 7.88-8.1) and provides the first direct evidence that the serine proteases are able to stabilize the oxyanion of tetrahedral adducts. Indirect evidence is adduced that the imidazole pK1 of histidine-57 is greater than or equal to 8.1. Line-broadening studies suggest that there may be extra fast exchange line broadening, which could result from rapid tautomeric exchange between neutral and zwitterionic species within the inhibitor complex. The significance of these results for the catalytic mechanism of serine proteases is discussed.  相似文献   

17.
The proposed interaction between the amino acid residues Asp 14 and His 48 of ribonuclease A has been confirmed by 13C-NMR spectroscopy. The titration behaviour of the resonance of the side-chain carboxyl group of Asp 14 suggests a pKa of 6.5--7.0 for His 48. An equilibrium between different conformation process of His 48. Upon this deprotonation a hydrogen bond between the side-chains of Asp 14 or His 48 and Tyr 25 seems to be formed as is suggested by the behaviour of a tyrosine C zeta resonance assigned to Tyr 25. One phenylalanine resonance broadens and moves upfield on the addition of the inhibitor Cyd-2'-P, being therefore assigned to Phe 120. The behaviour of this resonance suggests that the upfield shift results from the anisotropy of the cytidine ring. Three signals are assigned to the three Phe residues.  相似文献   

18.
Gao G  DeRose EF  Kirby TW  London RE 《Biochemistry》2006,45(6):1785-1794
The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general increase in the Hill coefficients observed in the complex is consistent with the screening of the interacting lysine residues by the DNA. The pKa of K312 residue increased to 10.58 in the complex, probably due to salt bridge formation with the 5'-phosphate group of the DNA. The pKa values obtained for the lyase domain of Pol lambda in the present study are consistent with recent crystallographic studies of Pol beta complexed with 5-phosphorylated abasic sugar analogues in nicked DNA which reveal an open site with no obvious interactions that would significantly depress the pK value for the active site lysine residue. It is suggested that due to the heterogeneity of the damaged DNA substrates with which Pol lambda as well as other related polymerases may be required to bind, the unexpectedly poor optimization of the lyase catalytic site may reflect a compromise of flexibility with catalytic efficiency.  相似文献   

19.
The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.  相似文献   

20.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号