首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Franco  Augusto C. 《Plant Ecology》1998,136(1):69-76
Roupala montana is an evergreen species widespread in the seasonal savannas of the central plains of Brazil. I examined the degree of coupling of photosynthetic gas-exchange characteristics, water relations and growth responses of R. montana with regard to seasonal changes in soil water availability. Despite a rainless period of over three months soil water potential at 60 cm depth reached values of only about -1.0 MPa, while pre-dawn leaf water potential (l) reached about -0.4 MPa by the end of the three-month drought. Thus, R. montana had access to deep soil water in the dry period, but pre-dawn l did not reach the high wet season values of -0.2 MPa. Most of the shoot growth was concluded in the onset of the rainy season. Although some individual branches might have shown some extension thereafter, most of them remained inactive during the rest of the rainy season and the subsequent dry season. New leaf production was also restricted to the first part of the wet period. R. montana remained evergreen in the dry season, but there was a 27% decrease in the number of leaves and herbivory removed about 16% of the leaf area still present in the plant. CO2-exchange rates of these leaves reached only ca. 55% of the maximum rainy season values of 14 µmol m-2 s-1. Thus, the estimated potential daily carbon gain was about 34% of the maximum by the end of the dry period. These values will be even lower, if we considered the decrease in photosynthetic rates that occurred around midday. These reductions in photosynthetic rates as a result of partial stomatal closure were measured both in the wet and dry season and they were related to increases in the evaporative demand of the atmosphere. In conclusion, the combined effect of herbivory, leaf loss and reductions in photosynthetic rates limited plant productivity in the dry season.  相似文献   

2.
Moisture availability has the potential to affect tropical forest productivity at scales ranging from leaf to ecosystem. We compared data for leaf photosynthetic, chemical and structural traits of canopy trees, litterfall production and seasonal availability of soil water at four sites across a precipitation gradient (1,800–3,500 mm year–1) in lowland Panamanian forest to determine how productivity at leaf and ecosystem scales may be related. We found stronger seasonality in soil water potential at drier sites. Values were close to zero at all sites during the wet season and varied between a minimum of –2.5 MPa and –0.3 MPa at the driest and wettest sites, respectively, during the dry season. Leaf photosynthesis and nitrogen concentration decreased with increasing precipitation, whereas leaf thickness increased with increasing precipitation. Leaf toughness and fiber/N ratios increased with increasing precipitation indicating reduced nutritional content and palatability with precipitation. Seasonality of litter production and quality decreased with increasing precipitation, but the amount of litterfall produced was not substantially different among sites. It appears that in Neotropical forest, moisture availability is associated with leaf photosynthetic and defensive traits that influence litterfall timing and quality. Therefore, variation in leaf physiological traits has the potential to influence decomposition and nutrient cycling through effects on litter quality.  相似文献   

3.
土层厚度对刺槐旱季水分状况和生长的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
该研究测定了旱季和雨季刺槐(Robinia pseudoacacia)林不同土层厚度的土壤含水量, 刺槐的树高、胸径、小枝凌晨水势、叶片碳稳定同位素组成(δ13C)、叶面积、比叶重和气体交换指标; 分析了刺槐旱季和雨季的水分状况和土层厚度之间的关系; 通过刺槐对季节性干旱胁迫的反应, 估计华北石质山区不同土层厚度土壤水分对刺槐的承载能力; 并求证近年来该地区刺槐衰败和水分因素的关系。结果显示: 随着土层厚度减小, 旱季土壤含水量下降、凌晨小枝水势降低; 气孔导度和最大光合速率都减小, 而瞬时水分利用效率增加, 雨季上述指标无显著性差异, 旱季土壤含水量只有雨季的60%左右。随着土层变薄, 刺槐叶片δ13C增高, 叶面积减小, 比叶重增加; 刺槐树高和胸径减小。以上结果表明: 刺槐在不同季节下的水分状况综合反映土壤的供水能力, 土层浅薄导致土壤水分承载力不足, 致使刺槐在旱季受到较严重的水分胁迫, 这可能是刺槐出现衰败的重要原因。  相似文献   

4.
This article reports on quantified soil water gains and their possible effects on summer water relationships in a semiarid Stipa tenacissima L. grasslands located in SE Spain. We believe that the net soil water gains detected using minilysimeters could be from soil water vapour adsorption (WVA). Our study of high water-stress showed stomatal conductance (21.8–43.1 mmol H2O m−2 s−1) in S. tenacissima leaves unusual for the summer season, and the evapotranspiration from S. tenacissima grassland, estimated by a multi-source sparse evapotranspiration model, closely corresponding to total WVA. This highlights the importance of summer soil WVA to stomatal conductance and vital transpiration in S. tenacissima. This study measured pre-dawn leaf water potential (ψ) response to sporadic light rainfall, finding that a light summer rainfall (1.59 mm day−1) was sufficient to vary ψ in S. tenacissima from −3.8 (close to the turgour loss point) to −2.7 MPa. We hypothesize that soil WVA can supply vegetation with water vital to its survival in seasons with a severe water deficit, giving rise to a close relationship between soil water dynamics and plant water response.  相似文献   

5.
We investigated how leaf gas exchange and hydraulic properties acclimate to increasing evaporative demand in mature beech trees, Fagus crenata Blume and Fagus japonica Maxim., growing in their natural habitat. The measurements in the top canopy leaves were conducted using a 16-m-high scaffolding tower over two growing seasons. The daily maxima of net photosynthetic rate for the early growing season were close to the annual maximum value (11.9 mol m–2 s–1 in F. crenata and 7.7 mol m–2 s–1 in F. japonica). The daily maxima of water vapor stomatal conductance were highest in the summer, approximately 0.3 mol m–2 s–1 in F. crenata and 0.15 mol m–2 s–1 in F. japonica. From the early growing season to the summer season, the leaf-to-air vapor pressure deficit increased and the daily minima of leaf water potentials decreased. However, there was no loss of leaf turgor in the summer as a result of effective osmotic adjustment. Both the soil-to-leaf hydraulic conductance per unit leaf area and the twig hydraulic conductivity simultaneously increased in the summer, probably as a result of production of new vessels in the xylem. These results suggest that both osmotic adjustment and increased hydraulic conductance resulted in the largest diurnal maximum of stomatal conductance in the summer, resulting in the lowest relative stomatal limitation on net photosynthetic rate, although the leaf-to-air vapor pressure deficit was highest. These results indicate that even in a mesic forest, in which excessive hydraulic stress does not occur, the seasonal acclimation of hydraulic properties at both the single leaf and whole plant levels are important for plant carbon gain.  相似文献   

6.
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability.  相似文献   

7.
Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in developing leaves in an attempt to elucidate the relative importance of various photoprotective mechanisms during leaf ontogeny. Big leaves of Anthocephalus chinensis, a fast-growing light demanding species, expanded following an exponential pattern, while relatively small leaves of two shade-tolerant species Litsea pierrei and Litsea dilleniifolia followed a sigmoidal pattern. The juvenile leaves of A. chinensis and L. pierrei contained anthocyanin located below the upper epidermis, while L. dilleniifolia did not contain anthocyanin. Leaves of A. chinensis required about 12 d for full leaf expansion (FLE) and photosynthetic development was delayed 4 d, while L. pierrei and L. dilleniifolia required 18 or 25 d for FLE and photosynthetic development was delayed 10 or 15 d, respectively. During the leaf development the increase in maximum net photosynthetic rate was significantly related to changes in stomatal conductance and the leaf maturation period was positively related to the steady-state leaf dry mass per area for the three studied species. Dark respiration rate of leaves at developing stages was greater, and pre-dawn initial photochemical efficiency was lower than that of mature leaves. Young leaves displayed greater energy dissipation than mature leaves, but nevertheless, the diurnal photoinhibition of young L. dilleniifolia leaves was higher than that of mature leaves. The young red leaves of A. chinensis and L. pierrei with high anthocyanin contents and similar diurnal photoinhibition contained more protective enzymes (superoxide dismutase, ascorbate peroxidase) than mature leaves. Consequently, red leaves may have higher antioxidant ability.  相似文献   

8.
Net photosynthetic rates and mesophyll conductances at 25 °C at light saturation and air levels of carbon dioxide and oxygen were measured on recently fully expanded leaflets of second trifoliolate leaves of soybeans (Glycine max cv. Kent). Plants were grown outdoors in pots at Beltsville, Maryland with 14 planting times from May through August, 1983. Air temperature and humidity, and photosynthetically active radiation (PAR) were measured for the expansion periods of the second trifoliolate leaves. Rates of net photosynthesis ranged from 24 to 33 mol m–2 s–1, and mesophyll conductances from 0.24 to 0.35 cm s–1 for the different planting dates. Mean 24-h air temperatures ranged from 20.6 to 29.0 °C, and mean daily PAR ranged from 29.4 to 58.4 mol m–2 d–1 for the leaf expansion periods. There was a positive relationship between photosynthetic characteristics and PAR during leaf expansion, and a negative relationship between photosynthetic characteristics and leaf expansion rates, with 96% of the variation in photosynthetic characteristics accounted for by these two variables. Leaf expansion rates were highly correlated with air temperature.  相似文献   

9.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

10.
M. A. Sobrado 《Oecologia》1986,68(3):413-416
Summary This study compared the tissue water relations and seasonal changes in leaf water potential components of an evergreen tree,Morisonia americana, and two evergreen shrubs,Capparis verrucosa andC. aristiquetae, with two deciduous trees,Humboltiella arborea andLonchocarpus dipteroneurus, and the deciduous vineMansoa verrucifera. All these species coexist in a tropical dry forest in Venezuela. Leaves of the evergreen species are sclerophyllous, while those of the deciduous species are mesophytic. Leaf area to leaf weight ratios of fully mature leaves were about 75 and 170 cm2 g–1 in evergreen and deciduous species, respectively. Seasonal fluctuations of leaf water content per unit of dry weight, water potential, and turgor pressure were smaller in evergreen than in deciduous species. The analysis of tissue water relations using pressurevolume curves showed that evergreen species could develop a higher leaf turgor and lose turgor at lower leaf water potentials than deciduous species. This was related to a lower osmotic potential at full turgor in evergreen (-3.0 MPa)_than in deciduous (-2.0 MPa) species, rather than to the elastic properties of leaf tissue. The volumetric modulus of elasticity was 14 MPa in evergreen compared with 7–10 MPa in deciduous species. Thus, leaf characteristics are important in determining the drought resistance of evergreen species of this tropical dry forest.  相似文献   

11.
The mean labor time of a leaf (hour/day–1) is defined as the ratio of mean daily photosynthetic rate of a leaf (Da; molm–2day–1) to the mean value of potential hourly photosynthetic rate (6060Amax mol m–2h–1) of the leaf. A model was proposed to estimate mean labor time of leaves. Mean labor time was obtained as the product of 24 (hours/day–1) and the four effects, each of which reduces production of a leaf: diel change in light (Diel Effect), reduction in light during cloudy and rainy days (Cloudy Effect), shading on the focal leaves (Shading Effect), and midday and afternoon depression in photosynthesis (Depression Effect). These four effects were estimated for open grown saplings of alder (Alnus sieboldiana), by measuring instantaneous photosynthetic rate and photon flux density above each leaf. The potential daily photosynthetic rate calculated from diel light condition in a clear day was 46.5% of hypothetical daily photosynthetic rate where maximum instantaneous photosynthetic rate was assumed to last throughout the life of the leaf (Diel Effect). The average of the daily photosynthetic rate considering clear, cloudy and rainy days was 79.7% of the clear day (Cloudy Effect). The photosynthetic rate estimated from light condition on the leaf was 85.6% of that in the open site (Shading Effect). Midday depression reduced the daily photosynthetic rate to 72.1% of the potential daily photosynthetic rate (Depression Effect). The product of the four effects multiplied by 24h gave the estimate of mean labor time of leaves to be approximately 5.5 (h/day–1).  相似文献   

12.
Srivastava  N.K.  Misra  A.  Srivastava  A.K.  Sharma  S. 《Photosynthetica》2004,42(3):469-472
Partitioning of current photosynthates towards primary metabolites and its simultaneous incorporation in leaf alkaloids was investigated in developing leaves of medicinally important Catharanthus roseus. Of the total 14CO2 assimilated, the leaves at positions 1–6 fixed 8, 22, 25, 19, 13, and 8 %, respectively, and stem 3 %. Leaf fresh mass, chlorophyll content, and CO2 exchange rate increased up to the third leaf. The total alkaloid content was highest in young actively growing leaves, which declined with age. Total 14C fixed and its content in ethanol soluble fraction increased up to the third leaf and then declined. The 14C content in primary metabolites such as sugars and organic acids was also highest in the 3rd leaf. The utilization of 14C assimilates into alkaloids was maximum in youngest leaf which declined with leaf age. Hence the capacity to synthesize alkaloids was highest in young growing leaves and metabolites from photosynthetic pathway were most efficiently utilized and incorporated into alkaloid biosynthetic pathway by young growing leaves.  相似文献   

13.
Two summer annual C4 grasses with different trampling susceptibilities were grown as potted plants, and diurnal leaf gas exchange and leaf water potential in each grass were compared. The maximum net photosynthetic rate, leaf conductance and transpiration rate were higher in the trampling-tolerant Eleusine indica (L.) Gaertn. than in trampling sensitive Digitaria adscendens (H. B. K.) Henr. Leaf water potential was much lower in E. indica than in D. adscendens. There were no differences in soil-to-leaf hydraulic conductance and leaf osmotic potential at full turgor as obtained by pressure–volume analysis. However, the bulk modulus of elasticity in cell walls was higher in E. indica leaves than in D. adscendens leaves. This shows that the leaves of E. indica are less elastic. Therefore, the rigid cell walls of E. indica leaves reduced leaf water potential rapidly by decreasing the leaf water content, supporting a high transpiration rate with high leaf conductance. In trampled habitats, such lowering of leaf water potential in E. indica might play a role in water absorption from the compacted soil. In contrast, the ability of D. adscendens to colonize dry habitats such as coastal sand dunes appears to be due to its lower transpiration rate and its higher leaf water potential which is not strongly affected by decreasing leaf water content.  相似文献   

14.
Leaf structure and physiology are thought to be closely linked to leaf longevity and leaf habit. Here we compare the seasonal variation in leaf hydraulic conductance (kleaf) and water potential of two evergreen tree species with contrasting leaf life spans, and two species with similar leaf longevity but contrasting leaf habit, one being deciduous and the other evergreen. One of the evergreen species, Simarouba glauca, produced relatively short-lived leaves that maintained high hydraulic conductance year round by periodic flushing. The other evergreen species, Quercus oleoides, produced longer-lived leaves with lower kleaf and as a result minimum leaf water potential was much lower than in S. glauca (–2.8 MPa vs –1.6 MPa). Associated with exposure to lower water potentials, Q. oleoides leaves were harder, had a higher modulus of elasticity, and were less vulnerable to cavitation than S. glauca leaves. Both species operate at water potentials capable of inducing 20 (S. glauca) to 50% (Q. oleoides) loss of kleaf during the dry season although no evidence of cumulative losses in kleaf were observed in either species suggesting regular repair of embolisms. Leaf longevity in the deciduous species Rhedera trinervis is similar to that of S. glauca, although maximum kleaf was lower. Furthermore, a decline in leaf water potential at the onset of the dry season led to cumulative losses in kleaf in R. trinervis that culminated in leaf shedding.  相似文献   

15.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

16.
Veneklaas  Erik J.  Poot  Pieter 《Plant and Soil》2003,257(2):295-304
Woodlands in south-western Australia are evergreen and transpire throughout the year despite the long, hot and dry summers of the Mediterranean climate. Results from a case study in a species-rich Banksia woodland are used to discuss the ecological and physiological properties that appear to be essential features of this and similar communities. Tree, shrub and perennial herbaceous species with long-lived leaves dominate the community, whereas winter-green herbaceous species with short-lived leaves constitute a minor group. The total leaf area index is therefore reasonably constant in all seasons. Leaf area index is low and canopies are open, causing good coupling between the vegetation and the atmosphere, and making stomatal control an effective regulator of transpiration. Mean maximum (winter) stomatal conductances were high at approximately 300 mmol m–2 s–1. Deep-rootedness allows the dominant species to access soil moisture throughout the unsaturated zone, and down to the capillary fringe of the saturated zone. Shrubs and herbs with shallow roots experience greater drought stress during summer. Rates of community evapotranspiration are limited by leaf area index in the wet season, and further reduced by stomatal closure in the dry season. Deep-rooted plants appear to decrease their stomatal conductance before the development of severe drought stress. Such conservative behaviour, possibly related to plant hydraulic constraints, is a contributing factor to the limited seasonality in community water use.  相似文献   

17.
Non-structural carbohydrate pools in a tropical forest   总被引:9,自引:0,他引:9  
The pool size of mobile, i.e. non-structural carbohydrates (NSC) in trees reflects the balance between net photosynthetic carbon uptake (source) and irreversible investments in structures or loss of carbon (sink). The seasonal variation of NSC concentration should reflect the sink/source relationship, provided all tissues from root to crown tops are considered. Using the Smithsonian canopy crane in Panama we studied NSC concentrations in a semi-deciduous tropical forest over 22 months. In the 9 most intensively studied species (out of the 17 investigated), we found higher NSC concentrations (starch, glucose, fructose, sucrose) across all species and organs in the dry season than in the wet season (NSC 7.2% vs 5.8% of dry matter in leaves, 8.8/6.0 in branches, 9.7/8.5 in stems, 8.3/6.4 in coarse and 3.9/2.2 in fine roots). Since this increase was due to starch only, we attribute this to drought-constrained growth (photosynthesis less affected by drought than sink activity). Species-specific phenological rhythms (leafing or fruiting) did not overturn these seasonal trends. Most of the stem volume (diameter at breast height around 40 cm) stores NSC. We present the first whole forest estimate of NSC pool size, assuming a 200 t ha–1 forest biomass: 8% of this i.e. ca. 16 t ha–1 is NSC, with ca. 13 t ha–1 in stems and branches, ca. 0.5 and 2.8 t ha–1 in leaves and roots. Starch alone (ca. 10.5 t ha–1) accounts for far more C than would be needed to replace the total leaf canopy without additional photosynthesis. NSC never passed through a period of significant depletion. Leaf flushing did not draw heavily upon NSC pools. Overall, the data imply a high carbon supply status of this forest and that growth during the dry season is not carbon limited. Rather, water shortage seems to limit carbon investment (new tissue formation) directly, leaving little leeway for a direct CO2 fertilization effects.  相似文献   

18.
Miconia albicans, a common evergreen cerrado species, was studied under field conditions. Leaf gas exchange and pre-dawn leaf water potential (Ψpd) were determined during wet and dry seasons. The potential photosynthetic capacity (P Npmax) and the apparent carboxylation efficiency (ε) dropped in the dry season to 28.0 and 0.7 %, respectively, of the maximum values in the wet season. The relative mesophyll (Lm) and stomatal (Ls) limitations of photosynthesis increased, respectively, from 24 and 44 % in the wet season to 79 and 57 % at the peak of the dry season when mean Ψpd reached −5.2 MPa. After first rains, the P Npmax, ε, and Lm recovered reaching the wet season values, but Ls was maintained high (63 %). The shallow root system growing on stonemason limited by lateral concrete wall to a depth of 0.33 m explained why extreme Ψpd was brought about. Thus M. albicans is able to overcome quickly the strains imposed by severe water stress.  相似文献   

19.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

20.
Seasonally dry tropical forests are dominated by deciduous and evergreen tree species with a wide range of leaf phenology. We hypothesized that Piscidia piscipula is able to extend leaf senescence until later in the dry season due to deeper and more reliable water sources than Gymnopodium floribundum, which loses leaves earlier in the dry season. Physiological performance was assessed as timing of leaf production and loss, growth, leaf water potential, depth of water uptake determined by stable isotopes, and leaf stable isotopic composition of carbon (δ13C) and oxygen (δ18O). P. piscipula took water primarily from shallow sources, whereas G. floribundum took water from shallow and deep sources. The greatest variation in water sources occurred during the onset of the dry season, when G. floribundum was shedding old leaves and growing new leaves, but P. piscipula maintained its leaves from the previous wet season. P. piscipula showed greater relative growth rate, greater leaf expansion rates, and more negative predawn and midday water potentials than G. floribundum. P. piscipula also exhibited greater leaf organic δ13C and lower δ18O values, indicating that the decrease in photosynthetic carbon isotope discrimination was associated with greater stomatal conductance and greater photosynthesis. Our results indicate that the contrasting early and late dry season leaf loss phenology of these two species is not simply determined by rooting depth, but rather a more complicated suite of characteristics based on opportunistic use of dynamic water sources, maximizing carbon gain, and maintenance of water potential during the dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号