首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary causes of sexual dimorphism in plants have not been as widely studied as in animals and the importance of sexual selection in causing dimorphism remains controversial. Sexual selection is most obvious when it favours the evolution of a trait which enhances mating success at the expense of decreased viability. We studied the relationship between floral display (number of inflorescences), pollinator attraction and plant survival in a dioecious shrub, Leucadendron xanthoconus. Pollinator attraction, measured as the number of insect pollinators, increased linearly with floral display in males. However, males with extravagant displays had a higher probability of dying. Our data suggest that male plants are undergoing selection on floral display for increased mating success counterbalanced by selection against plants with extravagant displays. Seed set in females did not increase with floral display, except at very low inflorescence numbers. Nor was female survival correlated with floral display. Because inflorescences are terminal in the species, selection for more inflorescences in males causes increased ramification, thinner terminal branches and smaller leaves. Thus vegetative dimorphism in this species appears to be caused by selection for extravagant floral display in males, but not females. Limits to dimorphism are imposed by survival costs of elaborate display.  相似文献   

2.
Variation in the timing of reproductive functions in dioecious organisms may result in adaptive changes in the direction of sexual dimorphism during the breeding season. For plants in which both pollen and seeds are wind-dispersed, it may be advantageous for male plants to be taller when pollen is dispersed and female plants to be taller when seeds are dispersed. We examined the dynamics of height dimorphism in Rumex hastatulus, an annual, wind-pollinated, dioecious plant from the southern USA. A field survey of seven populations indicated that females were significantly taller than males at seed maturity. However, a glasshouse experiment revealed a more complex pattern of height growth during the life cycle. No dimorphism was evident prior to reproduction for six of seven populations, but at flowering, males were significantly taller than females in all populations. This pattern was reversed at reproductive maturity, consistent with field observations. Males flowered later than females and the degree of height dimorphism was greater in populations with a later onset of male flowering. We discuss the potential adaptive significance of temporal changes in height dimorphism for pollen and seed dispersal, and how this may be optimized for the contrasting reproductive functions of the sexes.  相似文献   

3.
    
Male and female plants of dioecious species often differ in their resource demands and this has been linked to secondary sexual dimorphism, including sex‐specific interactions with other organisms such as herbivores and pollinators. However, little is known about the interaction between dioecious plants and fungal root endophytes. Plants may be simultaneously colonised by arbuscular mycorrhizal (AM) and dark septate (DS) fungi. While it is well established that AM mutualism involves reciprocal transfer of photosynthates and mineral nutrients between roots of host plants and these fungi, the role of DS fungi remains controversial. Here, we report the temporal and spatial variation in AM and DS fungi in female, male and non‐reproductive Antennaria dioica plants in three natural populations in Finland during flowering and after seed production. Females had higher colonisation by AM fungi, but lower colonisation by DS fungi than male and non‐reproductive plants. The higher AM colonisation was observed during flowering, and this difference varied among populations. Our results suggest that females and males of A. dioica interact with AM and DS fungi differently and that this relationship is dependent on soil fertility.  相似文献   

4.
5.
6.
    
Spatial patterns of fruit set within inflorescences may be controlled by pollination, nutrient allocation, or inflorescence architecture. Generally, flowers that have spatial and/or temporal precedence are more likely to set fruits. We sought to separate these factors by comparing patterns of fruit set on inflorescences of two species of Telopea (Proteaceae); one that flowers from the tip to the base of the rachis, the other from base to tip. In both species, most fruits were set at the top of the inflorescence (the last flowers to open for T. speciosissima) and this was extreme for T. mongaensis, where the top flowers open first. Fruit set was not generally limited by inadequate pollination for either T. mongaensis or T. speciosissima, as hand pollinations did not increase fruit set and many abscised flowers contained pollen tubes. In T. speciosissima, we tested whether removal of developing topmost fruits would ‘release’ those that had initiated but not yet aborted lower down. There was no significant effect. Plant hormones can increase the degree to which a developing fruit is a sink for nutrients, so we applied cytokinin to the developing lower fruits on some inflorescences. There was no significant effect of the hormone treatment. We conclude that temporal precedence may contribute to the skewed pattern of fruit set in T. mongaensis, because there was an extreme concentration of fruit set on the distal part of the inflorescences, but it cannot explain this pattern of fruit set in T. speciosissima, where the distal flowers are the last to open. Some other process must therefore constrain fruit set to the topmost flowers in an inflorescence. While cytokinin application had no significant effect, the power of this experiment was low and we consider that the hypothesis of hormonal control is worth further exploration.  相似文献   

7.
    
Although plant species with either animal or wind pollination modes are widespread and usually sympatric in nature, the degree of pollen interference from wind‐pollinated species on animal‐pollinated species remains little known. Conifer trees generally release a huge number of pollen grains into the air, floating into our noses and sometimes causing an allergic response. Here we document airborne pollen from two conifers (Pinus densata Mast. and Picea likiangensis (Franch.) E. Pritz.) deposited on the stigmas of eight coflowering insect‐pollinated angiosperms over 2 years in a mountainous forest community, in Shangri‐La, southwest China. Pollen density in the air as well as conifer pollen deposited onto stigmas at short and long distances from the airborne pollen source were quantified. Our results showed that conifer pollen as a proportion of total stigmatic pollen loads in the insect‐pollinated plants varied from 0.16% to 8.67% (3.16% ± 0.41%, n = 735) in 2016 and 0.66% to 5.38% (2.87% ± 0.86%, n = 180), and pollen quantity per unit area was closely related to that of airborne pollen in the air. Conifer pollen deposition on stigmas of insect‐pollinated species decreased greatly with increased distance from the pollen source. In the 10 plant species flowering in summer after conifer pollen release had finished, heterospecific pollen deposited on these stigmas came mainly from other insect‐pollinated flowers, with little contribution from airborne conifer pollen. The results indicate that there might be little interference with coflowering angiosperms by airborne pollen from dominant conifers in natural communities.  相似文献   

8.
In considerations of sexual floral size dimorphism, there is a conflict between sexual selection theory, which predicts that larger floral displays attract more pollinators, and optimality theory—particularly the ideal free distribution—which predict that pollinators' visits should match nutritional rewards. As an alternate explanation of this dimorphism, Müller reported that pollinators tend to visit larger male flowers before visiting smaller female flowers, thereby promoting effective pollination. To investigate optimality predictions, I offered pollinators a choice between smaller, less numerous, but more rewarding flowers; and larger, more numerous, but less rewarding flowers. Foragers initially favored the larger and more numerous flowers, but rapidly shifted preferences to conform with the predictions of the ideal free distribution. To test Müller's hypothesis, I offered pollinators choices between larger and smaller corollas of equal caloric reward. Results showed that although pollinators tended to visit larger corollas first, they did not visit them more often. These experiments highlight the need for further investigation into the tradeoff between natural and sexual selection, and their respective influences in pollination ecology.  相似文献   

9.
    
Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life‐history traits. Here, we quantify the extent of convergence of five key life‐history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed‐dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire‐prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life‐history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life‐history strategies. We found that species with longer seed‐dispersal distances tended to evolve lower pollen‐dispersal distance, that insect‐pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed‐bank evolved toward reduced fire‐survival ability of adults.  相似文献   

10.
    
Sexual system is a key determinant of genetic variation and reproductive success, affecting evolution within populations and within clades. Much research in plants has focused on evolutionary transitions away from the most common state of hermaphroditism and toward the rare state of dioecy (separate sexes). Rather than transitions predominantly toward greater sexual differentiation, however, evolution may proceed in the direction of lesser sexual differentiation. We analyzed the macroevolutionary dynamics of sexual system in angiosperm genera that contain both dioecious and nondioecious species. Our phylogenetic analyses encompass a total of 2145 species from 40 genera. Overall, we found little evidence that rates of sexual system transitions are greater in any direction. Counting the number of inferred state changes revealed a mild prevalence of transitions away from hermaphroditism and away from dioecy, toward states of intermediate sexual differentiation. We identify genera in which future studies of sexual system evolution might be especially productive, and we discuss how integrating genetic or population‐level studies of sexual system could improve the power of phylogenetic comparative analyses. Our work adds to the evidence that different selective pressures and constraints act in different groups, helping maintain the variety of sexual systems observed among plants.  相似文献   

11.
Interactions, antagonistic or mutualistic, can exert selection on plant traits. We explored the role of Hadena bicruris, a pollinating seed predator, as a selective agent on its host, the dioecious plant Silene latifolia. We exposed females from artificial-selection lines (many, small flowers (SF) vs. few, large flowers (LF)) to this moth. Infestation did not differ significantly between lines, but the odds of attacked fruits aborting were higher in SF females. We partitioned selection between that caused by moth attack and that resulting from all other factors. In both lines, selection via moth attack for fewer, smaller flowers contrasted with selection via other factors for more flowers. In LF females, selection via the two components was strongest and selection via moth attack also favoured increased fruit abortion. This suggests that the moths act as more of a selective force on flower size and number via their predating than their pollinating role.  相似文献   

12.
中国农业生态系统昆虫授粉功能量与服务价值评估   总被引:1,自引:0,他引:1       下载免费PDF全文
所有开花植物中大约有80%的物种需要动物作为授粉媒介。系统介绍了中国重要栽培作物花的结构和类型,授粉过程、媒介和方式,作物对昆虫授粉的依赖程度,昆虫授粉功能与服务的概念,以及昆虫授粉功能量与服务价值量的评估方法;同时评估了我国各省农业生态系统中昆虫对重要作物的授粉功能量与服务价值量。结果表明:粮食作物、水果作物、蔬菜作物和经济作物不同程度的依赖昆虫授粉。根据2015年主要农作物产量、作物产品价格、昆虫授粉依赖程度等数据,计算得出昆虫对我国22类主要农作物的授粉功能量为1.8亿吨农产品产量和授粉服务价值为8860.5亿元(占当年GDP的1.3%),具有巨大的经济价值。2015年昆虫对主要栽培作物的授粉功能量和服务价值排在前五名的都是山东、河南、河北、陕西和新疆,年授粉服务价值均大于500亿元,反映出这5个省的主要农作物对昆虫授粉依赖程度较高。昆虫对作物的授粉功能量评价有助于了解昆虫对作物生物量或产量的生物学和生态学效应以及作物对昆虫授粉的需求。昆虫对作物的授粉服务价值评估有助于掌握昆虫授粉为人类所带来的经济效应或经济价值,并帮助决策维持或增强授粉昆虫多样性和种群数量的人力、物力和财力投入。  相似文献   

13.
In extreme cases leaves in male plants of the dioecious genus Leucadendron (Proteaceae) are up to an order of magnitude smaller than female leaves. This secondary sexual dimorphism (SSD) in leaf size has previously been suggested to be due to intra-male sexual selection, leading to an increase in male allocation to reproduction in dimorphic species. After critically evaluating previous data provided to support this hypothesis, I suggest on both theoretical grounds and on re-analysis that this argument is unlikely and unsupported. Leaf size dimorphism could theoretically evolve directly due to disruptive ecological selection between genders, leading to niche dimorphism either within or between habitats. I test this ecological causation hypothesis by providing data on specific leaf area (sla) and water use efficiency (δ 13C) of leaves from males and females of several Leucadendron species. Results confirm the expectation of minimal gender differences. I argue that leaf dimorphism is a consequence of selection on flower size and architecture.  相似文献   

14.
    
Ambophily, the mixed mode of wind and insect pollination is still poorly understood, even though it has been known to science for over 130 years. While its presence has been repeatedly inferred, experimental data remain regrettably rare. No specific suite of morphological or ecological characteristics has yet been identified for ambophilous plants and their ecology and evolution remain uncertain. In this review we summarise and evaluate our current understanding of ambophily, primarily based on experimental studies. A total of 128 ambophilous species – including several agriculturally important crops – have been reported from most major habitat types worldwide, but this probably represents only a small subset of ambophilous species. Ambophilous species have evolved both from wind- and insect-pollinated ancestors, with insect-pollinated ancestors mostly representing pollination by small, generalist flower visitors. We compiled floral and reproductive traits for known ambophilous species and compared our results to traits of species pollinated either by wind or by small generalist insects only. Floral traits were found to be heterogeneous and strongly overlap especially with those of species pollinated by small generalist insects, which are also the prominent pollinator group for ambophilous plants. A few ambophilous species are only pollinated by specialised bees or beetles in addition to pollination by wind. The heterogeneity of floral traits and high similarity to generalist small insect-pollinated species lead us to conclude that ambophily is not a separate pollination syndrome but includes species belonging to different insect- as well as wind-pollination syndromes. Ambophily therefore should be regarded as a pollination mode. We found that a number of ecological factors promoted the evolution of ambophily, including avoidance of pollen limitation and self-pollination, spatial flower interference and population density. However, the individual ecological factors favouring the transition to ambophily vary among species depending on species distribution, habitat, population structure and reproductive system. Finally, a number of experimental studies in combination with observations of floral traits of living and fossil species and dated phylogenies may indicate evolutionary stability. In some clades ambophily has likely prevailed for millions of years, for example in the castanoid clade of the Fagaceae.  相似文献   

15.
    
Abstract The pollination ecology of eight populations of the tree Embothrium coccineum was studied along a steep rainfall gradient in NW Patagonia, Argentina. The showy red flowers suggest an ornithophilous pollination syndrome and they have been reported to attract hummingbirds in Argentina and hummingbirds and passerines in Chile. At each population, flower visitors were recorded and floral rewards were analysed. We found a highly significant increase in nectar concentration towards the drier end of the gradient, but this change was not related to the turnover of species in the flower‐visitor assemblage of E. coccineum. In addition to the hummingbird Sephanoides sephaniodes (Green‐Backed Firecrown, Trochilidae) which is widespread throughout the temperate forest at this latitude, other species seem to be locally important as pollinators of E. coccineum in some sites in Argentina (e.g. two long‐tongued tanglewing flies (Nemestrinidae) of the genus Trichophthalma). The long‐dated occurrence of tanglewing flies in South America, relative to the more modern hummingbirds, suggests that ornithophily may be a derived character in E. coccineum, the ancestral condition being pollination by Nemestrinidae.  相似文献   

16.
    
The influence of outcrossing and pollination biology on the maintenance of hermaphroditism was studied for Schiedea lydgatei (Caryophyllaceae: Alsinoideae), a species endemic to Moloka`i in the Hawaiian Islands. Schiedea lydgatei is the only hermaphroditic species in an otherwise dimorphic clade and hermaphroditism is likely the result of a reversal from a gynodioecious ancestor. Both wind and native moths in the family Pyralidae are responsible for pollination in S. lydgatei. Outcrossing rates were generally high (0.80), especially in years when the greatest number of plants were flowering. The combination of high outcrossing rates and substantial inbreeding depression indicates that at present females would not be favored in the population. Pollination by both wind and insects is consistent with the hypothesis that hermaphroditism is the result of a relatively recent reversal, as the ancestor of S. lydgatei was probably wind pollinated and gynodioecious with few females in the populations. A shift from wind to predominately insect pollination on Moloka`i may have resulted in increased outcrossing rates and prevented the expression of high inbreeding depression among progeny of hermaphrodites, a condition that would select against females and favor a reversal to hermaphroditism. Because few females were likely to have been present in ancestral populations that colonized Moloka`i, founder effect is another potential explanation for loss of females. In either case, current high levels of outcrossing prevent re-establishment of females in populations of S. lydgatei.  相似文献   

17.
    
Sexual conflict can drive intersexual arms races, with female resistance and male persistence traits coevolving antagonistically. Such arms races are well documented in some diving beetles, although the extent of sexual conflict in this family remains unclear. The European dytiscid Agabus uliginosus has a strikingly dimorphic female; individuals from most regions are smooth and male‐like, whereas those from some populations have a strongly roughened dorsum, a trait that has attracted the name dispar. We demonstrate that rough and smooth females differ consistently in the development of dorsal surface microreticulation, and that these females are associated with males that differ in the development of their persistence traits. These findings extend the occurrence of pre‐insemination sexual conflict and associated intrasexual dimorphism in Dytiscidae, and suggest that such mating systems are relatively widespread in these beetles.  相似文献   

18.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

19.
  总被引:2,自引:0,他引:2  
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

20.
    
Recent IUCN assessments had resulted in up listing of the status of butterfly rays due to concerns of overfishing, but inadequate biological understanding of these rays prevents meaningful conservation and management measures. Therefore, this study was undertaken to address knowledge gaps in the reproductive biology and diet of longtail butterfly ray (Gymnura poecilura) and zone tail butterfly ray (Gymnura zonura) in Malaysian waters. From surveys of landing sites and fish markets from years 2017 to 2022, size (disc width, DW), weight and maturity were recorded, and stomachs were collected from 94 G. poecilura (N = 39 females and 55 males) and 20 G. zonura (N = 10 females and 10 males) specimens. The length-weight relationships were significantly different between sexes for G. poecilura. The size at maturity (DW50) was estimated to be 476.0 mm (females), 385.0 mm (males) for G. poecilura and 442.0 mm (combined) for G. zonura. The number of embryos ranged from 1 to 6, and the embryo size was between 73.90 to 130.44 mm DW. Dietary analysis of stomach contents revealed that fish prey was dominant in both G. poecilura [94.4% Index of Relative Importance (IRI)] and G. zonura (100% IRI). Ontogenetic shift was seen in G. poecilura that fed on more variety of prey items, including shrimps, squids and crabs with an increase in body size. Both species co-occur all along coastal Malaysia although G. zonura is rarely encountered from fisheries surveys along the Strait of Malacca. Given similar habitat associations and dietary habits, G. poecilura may be able to outcompete G. zonura across their shared habitat range. The validity of G. japonica and G. micrura records in Malaysia remains questionable and requires future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号