首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.  相似文献   

2.
AIMS: To determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) and serotypes and virulence markers of the STEC isolates from beef and dairy cattle in Rio Grande do Sul, Brazil. METHODS AND RESULTS: Faecal samples from beef cattle were collected at slaughterhouses. The isolates were submitted to colony hybridization assay with specific DNA probes for stx1, stx2 and eae genes, and serotyped for the identification of O and H antigens. Thirty-nine per cent of beef cattle surveyed harboured at least one STEC strain. Among the distinct serotypes identified, 10 were shared by both beef and dairy cattle. Most of the strains isolated harboured stx2. Genotypic and phenotypic profiles allowed the identification of 34 and 31 STEC strains, isolated from beef and dairy cattle, respectively. Serotypes O10:H14, O15:H21, O96:H21, O119:H4, O124:H11, O128:H21, O137:H-, O141:H19, O159:H42, O160:H2 and O177:H11, identified in this study, have not been previously reported as STEC isolated from cattle. CONCLUSIONS: Cattle are an important reservoir of STEC strains associated with human diseases in South America. SIGNIFICANCE AND IMPACT OF THE STUDY: Determining the prevalence, genotypic profile and serotypes of STEC strains isolated from cattle enables the prediction of possible risk for public health.  相似文献   

3.
Farm management practices that reduce the prevalence of food-borne pathogens in live animals are predicted to enhance food safety. To ascertain the potential role of livestock bedding in the ecology and epidemiology of Escherichia coli O157:H7 on farms, the survival of this pathogen in used-sand and used-sawdust dairy cow bedding was determined. Additionally, a longitudinal study of mature dairy cattle housed on 20 commercial dairy farms was conducted to compare the prevalence of E. coli O157:H7 in cattle bedded on sand to that in cattle bedded on sawdust. E. coli O157:H7 persisted at higher concentrations in used-sawdust bedding than in used-sand bedding. The overall average herd level prevalence (3.1 versus 1.4%) and the number of sample days yielding any tests of feces positive for E. coli O157:H7 (22 of 60 days versus 13 of 60 days) were higher in sawdust-bedded herds. The choice of bedding material used to house mature dairy cows may impact the prevalence of E. coli O157:H7 on dairy farms.  相似文献   

4.
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx1a subtype, while human strains carried mainly stx1a or stx2a. The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients.  相似文献   

5.
Gallbladders and rectal contents were collected from cattle (n = 933) at slaughter to determine whether the gallbladder harbors Escherichia coli O157:H7. Both gallbladder mucosal swabs and homogenized mucosal tissues were used for isolation. Only five gallbladders (0.54%) were positive for E. coli O157:H7. Fecal prevalence averaged 7.1%; however, none of the cattle that had E. coli O157:H7 in the gallbladder was positive for E. coli O157:H7 in feces. Therefore, the gallbladder does not appear to be a common site of colonization for E. coli O157:H7 in beef cattle.  相似文献   

6.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

7.

Background

In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference.

Results

Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested.

Conclusions

This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.  相似文献   

8.
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.  相似文献   

9.
Aims: To feno‐genotypically characterize the Shiga toxin‐producing Escherichia coli (STEC) population in Argentinean dairy cows. Methods and Results: From 540 STEC positive samples, 170 isolates were analyzed by multiplex PCR and serotyping. Of these, 11% carried stx1, 52%stx2 and 37%stx1/stx2. The ehxA, saa and eae were detected in 77%, 66% and 3%, respectively. Thirty‐five per cent of strains harboured the profile stx1, stx2, saa, ehxA and 29%stx2, saa, ehxA. One hundred and fifty‐six strains were associated with 29 different O serogroups, and 19 H antigens were distributed among 157 strains. STEC O113:H21, O130:H11 and O178:H19 were the most frequently found serotypes. The STEC O157:H7 were detected in low rate and corresponded to the stx2+, eae+, ehxA+ virulence pattern. Conclusions: We detected a diversity of STEC strains in dairy cattle from Argentina, most of them carrying genes linked to human disease. Significance and Impact of the study: The non‐O157 STEC serotypes described in this study are associated worldwide with disease in humans and represent a risk for the public health. For this, any microbiological control in dairy farms should be targeted not only to the search of O157:H7 serotype.  相似文献   

10.
While cattle in general have been identified as a reservoir of Escherichia coli O157:H7, there are limited data regarding the prevalence and clonality of this pathogen in downer dairy cattle and the potential impact to human health that may occur following consumption of meat derived from downer dairy cattle. In the present study, conducted at two slaughter facilities in Wisconsin between May and October of 2001, we established a higher prevalence of E. coli O157:H7 in fecal and/or tissue samples obtained aseptically from intact colons of downer dairy cattle (10 of 203, 4.9%) than in those from healthy dairy cattle (3 of 201, 1.5%). Analyses of 57 isolates, representing these 13 positive samples (one to five isolates per sample), by pulsed-field gel electrophoresis, revealed 13 distinct XbaI restriction endonuclease digestion profiles (REDP). Typically, isolates from different animals displayed distinct REDP and isolates from the same fecal or colon sample displayed indistinguishable REDP. However, in one sample, two different, but highly related, REDP were displayed by the isolates recovered. Antimicrobial susceptibility testing indicated that 10 of the 57 isolates, recovered from 2 (1 downer and 1 healthy animal) of the 13 positive samples, were resistant to at least 1 of 18 antimicrobials tested. However, there was no appreciable difference in the frequency of resistance of isolates recovered from downer and healthy dairy cattle, and not all isolates with the same REDP displayed the same antimicrobial susceptibility profile. Lastly, it was not possible to distinguish between isolates recovered from downer and healthy cattle based on their XbaI REDP or antimicrobial susceptibility. These results indicate that downer cattle had a 3.3-fold-higher prevalence of E. coli O157:H7 than healthy cattle within the time frame and geographic scope of this study.  相似文献   

11.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H−, O8:H19, O26:H−, O26:H11, O113:H21, O157:H7, O157:H− and Ont:H− which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H− and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H− representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.  相似文献   

12.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

13.

Background

Cattle are a reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157), and are known to harbor subtypes not typically found in clinically ill humans. Consequently, nucleotide polymorphisms previously discovered via strains originating from human outbreaks may be restricted in their ability to distinguish STEC O157 genetic subtypes present in cattle. The objectives of this study were firstly to identify nucleotide polymorphisms in a diverse sampling of human and bovine STEC O157 strains, secondly to classify strains of either bovine or human origin by polymorphism-derived genotypes, and finally to compare the genotype diversity with pulsed-field gel electrophoresis (PFGE), a method currently used for assessing STEC O157 diversity.

Results

High-throughput 454 sequencing of pooled STEC O157 strain DNAs from human clinical cases (n = 91) and cattle (n = 102) identified 16,218 putative polymorphisms. From those, 178 were selected primarily within genomic regions conserved across E. coli serotypes and genotyped in 261 STEC O157 strains. Forty-two unique genotypes were observed that are tagged by a minimal set of 32 polymorphisms. Phylogenetic trees of the genotypes are divided into clades that represent strains of cattle origin, or cattle and human origin. Although PFGE diversity surpassed genotype diversity overall, ten PFGE patterns each occurred with multiple strains having different genotypes.

Conclusions

Deep sequencing of pooled STEC O157 DNAs proved highly effective in polymorphism discovery. A polymorphism set has been identified that characterizes genetic diversity within STEC O157 strains of bovine origin, and a subset observed in human strains. The set may complement current techniques used to classify strains implicated in disease outbreaks.  相似文献   

14.
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.  相似文献   

15.
Prevalence, antibiotic susceptibility, and genetic diversity were determined for Escherichia coli O157:H7 isolated over 11 months from four beef cattle feedlots in southwest Kansas. From the fecal pat (17,050) and environmental (7,134) samples collected, 57 isolates of E. coli O157:H7 were identified by use of bacterial culture and latex agglutination (C/LA). PCR showed that 26 isolates were eaeA gene positive. Escherichia coli O157:H7 was identified in at least one of the four feedlots in 14 of the 16 collections by C/LA and in 9 of 16 collections by PCR, but consecutive positive collections at a single feedlot were rare. Overall prevalence in fecal pat samples was low (0.26% by C/LA, and 0.08% by PCR). No detectable differences in prevalence or antibiotic resistance were found between isolates collected from home pens and those from hospital pens, where antibiotic use is high. Resistant isolates were found for six of the eight antibiotics that could be used to treat E. coli infections in food animals, but few isolates were multidrug resistant. The high diversity of isolates as measured by random amplification of polymorphic DNA and other characteristics indicates that the majority of isolates were unique and did not persist at a feedlot, but probably originated from incoming cattle. The most surprising finding was the low frequency of virulence markers among E. coli isolates identified initially by C/LA as E. coli O157:H7. These results demonstrate that better ways of screening and confirming E. coli O157:H7 isolates are required for accurate determination of prevalence.  相似文献   

16.
Weaned 3- to 4-month-old calves were fasted for 48 h, inoculated with 1010 CFU of Shiga toxin-positive Escherichia coli (STEC) O157:H7 strain 86-24 (STEC O157) or STEC O91:H21 strain B2F1 (STEC O91), Shiga toxin-negative E. coli O157:H7 strain 87-23 (Stx O157), or a nonpathogenic control E. coli strain, necropsied 4 days postinoculation, and examined bacteriologically and histologically. Some calves were treated with dexamethasone (DEX) for 5 days (3 days before, on the day of, and 1 day after inoculation). STEC O157 bacteria were recovered from feces, intestines, or gall bladders of 74% (40/55) of calves 4 days after they were inoculated with STEC O157. Colon and cecum were sites from which inoculum-type bacteria were most often recovered. Histologic lesions of attaching-and-effacing (A/E) O157+ bacteria were observed in 69% (38/55) of the STEC O157-inoculated calves. Rectum, ileocecal valve, and distal colon were sites most likely to contain A/E O157+ bacteria. Fecal and intestinal levels of STEC O157 bacteria were significantly higher and A/E O157+ bacteria were more common in DEX-treated calves than in nontreated calves inoculated with STEC O157. Fecal STEC O157 levels were significantly higher than Stx O157, STEC O91, or control E. coli; only STEC O157 cells were recovered from tissues. Identifying the rectum, ileocecal valve, and distal colon as early STEC O157 colonization sites and finding that DEX treatment enhances the susceptibility of weaned calves to STEC O157 colonization will facilitate the identification and evaluation of interventions aimed at reducing STEC O157 infection in cattle.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) strains are considered as one of the major food-borne disease agents in humans worldwide. STEC strains, also called verotoxin-producing E. coli strains. The objectives of the present study were serotyping and molecular characterization of shiga toxigenic E. coli associated with raw meat and milk samples collected from Riyadh, Saudi Arabia. A total of 540 milk samples were collected from 5 dairy farms and 150 raw meat samples were collected from different abattoirs located in Riyadh, Saudi Arabia. E. coli were recovered from 86 milk samples (15.93%), serotyping of E. coli isolates revealed, 26 (4.81%) strains O157: H7, 23 (4.26%) strains O111, 20 (3.70%) strains O113: H21, 10 (1.85%) strains O22: H8 and 7 (1.3%) strains O172: H21. Meanwhile, 17 (11.33%) strains of E. coli were recovered from raw meat samples, serotyping of E. coli isolates revealed, 6 (4%) strains O157: H7, 5 (3.33%) strains O111 and 4 (2.67%) strains O174: H2 and only two (1.33%) strains were identified as O22: H8. Shiga toxin2 was detected in 58 (67.44%) serotypes of E. coli recovered from milk samples and 16 (94.12%) serotypes of E. coli recovered from meat samples, while intimin gene was detected in 38 (44.186%) serotypes of E. coli recovered from milk samples and in 10 (58.82%) serotypes of E. coli recovered from meat samples. The results of this study revealed the efficiency of combination between serotyping and molecular typing of E. coli isolates recovered from food of animal origin for rapid detection and characterization of STEC.  相似文献   

18.
Novel and as yet rare non-O157 Shiga toxin (Stx)-producing Escherichia coli (STEC) serotypes are emerging in Europe. Two different sorbitol-fermenting STECs, O100:H- carrying the virulence gene stx2 and O127:H40 carrying stx1 and eae genes (found in two related subjects), were isolated from patients’ stool samples. Non-O157 STEC infections in humans are currently under-diagnosed. This report highlights the need for, and importance of, screening for Shiga toxins or serotypes other than just O157.  相似文献   

19.
We determined the prevalence of Escherichia coli O157:H7 in organically and naturally raised beef cattle at slaughter and compared antibiotic susceptibility profiles of the isolates to those of isolates from conventionally raised beef cattle. The prevalences of E. coli O157:H7 were 14.8 and 14.2% for organically and naturally raised cattle, respectively. No major difference in antibiotic susceptibility patterns among the isolates was observed.Many cattle producers have adopted production methods termed niche marketing to meet consumer demand for safe and healthy beef. The two main niches for beef cattle producers are organic and natural production (3). Organic beef cattle production, regulated by the U.S. Department of Agriculture, requires feeding with certified organic feed (16) and raising cattle without the use of antibiotics, hormones, and other veterinary products (3). Guidelines for producers to label the product as “natural” differ among natural beef programs, and such programs are administered and regulated by the company or organization that owns the brand name rather than the U.S. Department of Agriculture (11). Natural production guidelines often include a complete restriction on the use of antibiotics and growth-promoting hormones, but unlike guidelines for organic production, they allow feed from nonorganic sources (11). Escherichia coli O157:H7 is a major food-borne pathogen that causes outbreaks of hemorrhagic enteritis, which often leads to hemolytic uremic syndrome in children and the elderly (10). Cattle are major reservoirs of E. coli O157:H7, which colonizes the hindgut, specifically the rectoanal mucosal region. Cattle feces are the major source of food and water contamination (10). The impact of organic production methods on the prevalence of food-borne pathogens, including E. coli O157:H7 and Campylobacter spp. in dairy cattle (7, 14) and Campylobacter and Salmonella spp. in chickens (6, 19), has been studied previously. However, there is no published study on the prevalence of E. coli O157:H7 in organically and naturally raised beef cattle. Additionally, nothing is known regarding the effects of organic and natural production methods on the antibiotic susceptibilities of E. coli O157:H7 in beef cattle. Our objectives were to determine the prevalence of E. coli O157:H7 in the feces of organically and naturally raised beef cattle at slaughter and compare the antibiotic susceptibilities of isolates from organically, naturally, and conventionally raised beef cattle.Cattle included in this study were from three types of production systems, organic, natural, and conventional. Organically raised beef cattle were from farms that were certified by the National Organic Program (17). The naturally raised beef cattle were from farms that were certified by the All Natural Source Verified Beef Program (17). The collection of samples from these cattle occurred in an abattoir. Samples from conventionally raised cattle from two feedlots were collected in a different abattoir so that the antibiotic susceptibilities of their isolates could be compared with those of isolates from organically and naturally raised cattle. Fecal samples were obtained by cutting open the rectum and spooning out the contents. The mucosa of the rectum was then rinsed with water until free of visible fecal material and swabbed with a sterile foam-tipped applicator (4). The isolation and identification of E. coli O157 and PCR detection of major virulence genes (eae, stx1, stx2, hlyA, and fliC) were carried out as described by Reinstein et al. (13). A subset of 60 isolates, 20 (10 from fecal samples and 10 from rectoanal mucosal swabs [RAMS]) from each production system, was randomly chosen to determine the antibiotic susceptibility patterns by the broth microdilution method (9). The antibiotics (all from Sigma-Aldrich) tested were amikacin, amoxicillin (amoxicilline), ampicillin, apramycin, bacitracin, cefoxitin, ceftazidime, ceftriaxone, cephalothin (cefalotin), chloramphenicol, chlortetracycline, ciprofloxacin, enrofloxacin, erythromycin, florfenicol, gentamicin, kanamycin, lincomycin, monensin, nalidixic acid, neomycin, norfloxacin, novobiocin, oxytetracycline, penicillin, rifampin (rifampicin), spectinomycin, streptomycin, tetracycline, tilmicosin, trimethoprim, tylosin, and vancomycin. The MIC was defined as the lowest concentration of an antibiotic that prevented visible growth of the organism. Each concentration of the antibiotic compound was duplicated in the microtiter plate, and the MIC determination was repeated with a different inoculum preparation. Logistic regression was performed using the PROC GENMOD procedure in the SAS system (SAS Institute, Cary, NC) to compare the prevalences of E. coli O157:H7 (with binomial distribution of outcomes) in fecal samples, RAMS samples, and fecal or RAMS samples (overall animal level prevalence). The MICs of antibiotics for E. coli O157:H7 isolates were analyzed using a nonparametric survival test in the PROC LIFETEST program of SAS to determine the effects of the production system (natural, organic, or conventional). Data were right censored when necessary (when the organism was resistant to the highest concentration evaluated). The Wilcoxon test was utilized to determine the effect of the production system on MICs.Samples from a total of 553, 506, and 322 organically, naturally, and conventionally raised cattle, respectively, were collected. In organically raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 24.4% across sampling days, with an average of 9.3%, and the prevalence in RAMS ranged from 0 to 30.9%, with an average of 8.7% (Fig. (Fig.1).1). In naturally raised cattle, the prevalence of E. coli O157:H7 in fecal samples ranged from 0 to 20.3%, with an average of 7.2%, and the prevalence in RAMS ranged from 0 to 23.8%, with an average of 8.9% (Fig. (Fig.1).1). In both organically and naturally raised cattle, the prevalence (total) detected by both sampling methods together was greater (P < 0.05) than the prevalence detected by either method alone (Fig. (Fig.1).1). Samples (either feces or RAMS) from 36 (11.2%) of 322 conventionally raised feedlot cattle were culture positive for E. coli O157:H7. The fecal prevalence of E. coli O157:H7 was 6.5%, and the prevalence determined by the RAMS sampling method was 7.1%. Most isolates (66.7% from organically raised beef cattle and 77.8% from naturally raised beef cattle) were positive for eae, stx2, hlyA, and fliC but negative for stx1. The stx2 gene was present in 100 and 95% of isolates from organically and naturally raised cattle, respectively. The prevalences of E. coli O157:H7 that we observed in organically and naturally raised beef cattle were similar to the previously reported prevalence in conventionally raised cattle (1). Our study did not include a statistical comparison of the prevalence data because of a number of differences, particularly in diet, among the organic, natural, and conventional production systems. Organically and naturally raised cattle are either required to graze a pasture or fed a forage-based diet. Although conflicting data exist (1), studies have shown that cattle fed a forage diet have both higher levels and longer durations of fecal shedding of E. coli O157:H7 than cattle fed a grain diet (18).Open in a separate windowFIG. 1.Prevalences of E. coli O157:H7 in organically and naturally raised beef cattle at slaughter. For each production system, bars not labeled with the same letter represent significantly different levels at P of <0.05.None of the tested isolates from the three production systems were susceptible to bacitracin, lincomycin, monensin, novobiocin, tilmicosin, tylosin, and vancomycin (MICs > 50 μg/ml). The MICs of 12 antibiotics (amikacin, apramycin, cefoxitin, ceftriaxone, gentamicin, kanamycin, nalidixic acid, neomycin, penicillin, rifampin, streptomycin, and tetracycline) for isolates collected from different production systems were significantly different (P < 0.05). MICs of gentamicin and neomycin for E. coli O157:H7 isolates from conventionally raised cattle were higher (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). However, MICs of amikacin, apramycin, cefoxitin, ceftriaxone, kanamycin, nalidixic acid, penicillin, rifampin, and tetracycline for isolates from conventionally fed cattle were lower (P < 0.05) than those for isolates from naturally and/or organically raised cattle (Table (Table1).1). Among the 60 isolates tested for antibiotic susceptibilities, 6 isolates (10%) were susceptible to all antibiotics included in the study, excluding the seven antibiotics to which all isolates were resistant. Forty-two isolates (70%) were resistant to one antibiotic (MIC, >50 μg or >50 IU/ml), nine isolates (15%) were resistant to two antibiotics, and two isolates (3%) were resistant to five antibiotics. One isolate from the organically raised cattle group was resistant to 10 (amoxicillin, ampicillin, cefoxitin, cephalothin, chloramphenicol, florfenicol, oxytetracycline, penicillin, streptomycin, and tetracycline) of the 26 antibiotics that were inhibitory to other isolates. We have presented the data as the median MICs for each production system. In some instances, the median values were the same but the actual MIC data differed between production systems. This effect occurred because the data were right censored if isolates were not susceptible at 50 μg or 50 IU/ml. If more isolates from a particular production system than from another are censored, it may lead to statistical differences. This pattern justifies the use of survival analysis for this type of data. There were differences between MICs of many antibiotics (cefoxitin, ceftriaxone, gentamicin, nalidixic acid, neomycin, penicillin, rifampin, and tetracycline) for isolates from organically raised cattle and conventionally raised cattle. Similarly, there were differences between MICs of many antibiotics (amikacin, apramycin, ceftriaxone, kanamycin, nalidixic acid, and rifampin) for isolates from naturally raised cattle and conventionally raised cattle. For many of these antibiotics, MICs for isolates from organically or naturally raised cattle were greater than those for isolates from conventionally raised cattle. Resistance genes can be transferred among the enteric pathogen populations in food animals and humans (8), and it is possible that resistance genes from other bacteria in the gastrointestinal system of cattle may be acquired by E. coli O157:H7. For cattle, heavy metals like copper and zinc, which are also antimicrobial, are included in diets at concentrations in excess of the nutritional requirements, often replacing conventional antibiotics, to achieve growth promotion (5). Feeding with metals also results in the emergence of bacterial populations resistant to metals (5), which in some instances may lead to resistance to antibiotics. Mechanisms of resistance to copper at concentrations above those usually tolerated by normal cellular processes have been found on plasmids linked to resistance to antibiotics in some bacteria (5). Therefore, it is possible that isolates from organically or naturally raised cattle that are not exposed to antibiotics still may become resistant to antibiotics.

TABLE 1.

MICs of antimicrobials for E. coli O157:H7 isolates from conventionally, naturally, and organically raised beef cattle
Antibiotic agentMedian MICa (95% confidence interval) for isolates from:
P value (Wilcoxon test)
Conventionally raised cattle (n = 20)Naturally raised cattle (n = 20)Organically raised cattle (n = 20)
Amikacin2.5 (2.3-3.1)*3.9 (3.1-4.7)†2.7 (2.3-3.1)*<0.01
Apramycin9.4 (8.6-9.4)*12.5 (9.4-15.6)†6.3 (6.3-9.4)*<0.01
Cefoxitin7.8 (6.3-7.8)*7.8 (6.3-9.4)*†8.2 (7.8-10.9)†0.08
Ceftriaxone0.04 (0.04-0.05)*0.05 (NE)†0.05 (NE)†0.02
Gentamicin0.6 (0.4-0.6)†0.6 (0.5-0.8)†0.4 (0.3-0.5)*<0.01
Kanamycin3.0 (2.3-3.1)*3.9 (2.7-4.7)†2.3 (2.0-3.1)*<0.01
Nalidixic acid3.1 (3.1-3.9)*4.7 (3.9-6.3)†4.7 (3.1-6.3)†<0.01
Neomycin1.6 (1.2-1.6)†1.6 (1.2-2.3)†1.0 (0.8-1.2)*<0.01
Penicillin50.0 (NE)*50.0 (NE)*†50.0 (NE)†0.02
Rifampin6.3 (5.5-6.3)*6.3 (NE)†6.3 (6.3-12.5)†<0.01
Streptomycin9.4 (9.4-12.5)*†9.4 (9.4-12.5)†7.8 (6.3-9.4)*0.04
Tetracycline3.1 (NE)*3.1 (3.1-4.7)*†4.7 (3.1-4.7)†0.02
Open in a separate windowaMICs of all antibiotics are expressed as micrograms per milliliter, except those of penicillin, which are in international units per milliliter. For each row, values not labeled with the same symbol (* or †) are significantly different (P < 0.05) as determined by survival analysis (Wilcoxon test). NE, not estimable.Information on the prevalence and antibiotic susceptibilities of food-borne pathogens in organic or natural livestock production systems is limited and variable. In a study of organic and conventional dairy cattle farms, conventional farms were found to be more likely than organic farms to have at least one Salmonella isolate resistant to antibiotics (12). Kuhnert et al. (7) observed no difference between the prevalences of E. coli O157:H7 in samples from organic and conventional dairy farms. Sato et al. reported that E. coli isolates from conventional dairies had significantly higher rates of resistance to certain antibiotics than isolates from organic dairies (15). Cho et al. (2) compared the antibiotic susceptibilities of Shiga toxin-producing O157 and non-O157 isolates from organic and conventional dairy farms and concluded that there was no overall significant difference in resistance between isolates from the two production systems.Although organic and natural beef production systems are becoming popular, little is known about the effects of these production systems on food-borne pathogens. Because the safety of the food supply is crucial, further investigation into these production systems and their potential for altering the risk of human illness is warranted. Our study found similar prevalences of E. coli O157:H7 in the feces of organically and naturally raised beef cattle, and our prevalence estimates for cattle in these types of production systems are similar to those reported previously for conventionally raised feedlot cattle.  相似文献   

20.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 × 101 to 1.5 × 105 CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号