首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birds – particularly long-lived species – have special adaptations for preventing tissue damage caused by reactive oxygen species. The objective of the present study was to analyse the fatty acid composition and non-enzymatic lipid peroxidation of mitochondria and microsomes obtained from liver, heart and brain of quail (Coturnix coturnix japonica), a short-lived bird. Fatty acids located in total lipids of rat liver, heart and brain mitochondria and microsomes were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The unsaturated fatty acid content found in mitochondria and microsomes of all tissue examined was approximately 50 and 40%, respectively with a prevalence of C18:1 n9. The C18:2 n6 content in brain mitochondria was significantly lower as compared to liver and heart mitochondria. Whereas the C20:4 n6 content in mitochondria from all tissues examined and brain microsomes was approximately 6%, liver and heart microsomes exhibited lower values. C22:6 n3 was absent in liver mitochondria, very low content in liver microsomes and heart organelles (between 0.5 and 1%) and high content in brain organelles, with mitochondria having the highest value (11%). Whereas liver and heart organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of C20:4 n6 and C22:6 n3. These results indicate that a low degree of fatty acid unsaturation in liver and heart organelles of quail, a short-lived bird, may confer advantage by decreasing their sensitivity to lipid peroxidation process.  相似文献   

2.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

3.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

4.
The effect of retinyl palmitate on the polyunsaturated fatty-acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria obtained from rat liver, kidney, brain, lung and heart, was studied. After incubation of microsomes and mitochondria in an ascorbate Fe++ system (120 min at 37 degrees C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes, mitochondria and kidney microsomes in the vitamin A group than in the control group. In mitochondria obtained from control rats, the most sensitive fatty acids for peroxidation were arachidonic acid C20:4 n6 in liver and docosahexaenoic acid C22:6 n3 in kidney and brain. In microsomes obtained from control rats, the most sensitive fatty acids for peroxidation were linoleic acid C18:2 n6 and C20:4 n6 in liver and C22:6 n3 in kidney. Changes in the most polyunsaturated fatty acids were not observed in organelles obtained from lung and heart. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, showed significant changes in liver, kidney and brain mitochondria, while in microsomes changes were significant in liver and kidney. These changes were less pronounced in membranes derived from rats receiving vitamin A. Our results confirm and extend previous observations that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.  相似文献   

5.
Studies were done to analyze the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from duck liver, heart and brain. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised 17.39+/-2.32, 11.75+/-3.25 and 9.70+/-0.40% of the total fatty acids in heart, liver and brain mitochondria respectively but only 13.39+/-1.31, 8.22+/-2.43 and 6.44+/-0.22% of the total fatty acids in heart, liver and brain microsomes, respectively. Docosahexahenoic acid comprised 17.02+/-0.78, 4.47+/-1.02 and 0.89+/-0.07% of the total fatty acids in brain, liver and heart mitochondria respectively but only 7.76+/-0.53, 3.27+/-0.73 and 1.97+/-0.38% of the total fatty acids in brain, liver and heart microsomes. Incubation of organelles with ascorbate-Fe(2+) at 37 degrees C caused a stimulation of LP as indicated by the increase in light emission: chemiluminescence (CL) and the decrease of arachidonic acid to: 5.17+/-1.34, 8.86+/-0.71 and 5.86+/-0.68% of the total fatty acids in heart, liver and brain mitochondria, respectively, and to 4.10+/-0.61 in liver microsomes. After LP docosahexahenoic acid decrease to 7.29+/-1.47, 1.36+/-0.18 and 0.30+/-0.11% of the total fatty acids in brain, liver and heart mitochondria. Statistically significant differences in the percent of both peroxidable fatty acids (arachidonic and docosahexaenoic acid) were not observed in heart and brain microsomes and this was coincident with absence of stimulation of LP. The results indicate a close relationship between tissue sensitivity to LP in vitro and long chain polyunsaturated fatty acid concentration. Nevertheless, any oxidative stress in vitro caused by ascorbate-Fe(2+) at 37 degrees C seems to avoid degradation of arachidonic and docosahexaenoic acids in duck liver and brain microsomes. It is possible that because of the important physiological functions of arachidonic and docosahexaenoic acids in these tissues, they are protected to maintain membrane content during oxidative stress.  相似文献   

6.
The aim of this study was to examine the fatty acid composition and non-enzymatic lipid peroxidation (LP) of mitochondria and microsomes obtained from liver, heart and brain of Lonchura striata. The percentage of total unsaturated fatty acid was approximately 30-60% in the organelles from all tissues studied. Brain mitochondria and both organelles of liver exhibited the highest percentage of polyunsaturated fatty acid (PUFA) (30 and 18%, respectively). The arachidonic acid (AA) content was 7% in mitochondria of liver and brain and 3% in heart mitochondria. The percentage of docosahexanoic acid (DHA) was 8% in brain mitochondria and approximately 2-3% in heart and liver mitochondria. The peroxidizability index (PI) of brain mitochondria and both organelles from liver was higher than that of organelles from heart and brain microsomes. Liver organelles and brain mitochondria were affected by LP, as indicated by the increase in chemiluminescence and a decrease of AA and DHA. These changes were not observed during LP of brain microsomes and both organelles from heart. These results indicate: 1) PI positively correlates with PUFA percentage and LP; 2) The resistance to LP detected in heart organelles would contribute to the cardiac protection against oxidative damage.  相似文献   

7.
The testis is a remarkably active metabolic organ; hence it is suitable not only for studies of lipid metabolism in the organ itself but also for the study of lipid peroxidation processes in general. The content of fatty acids in testis is high with a prevalence of polyunsaturated fatty acids (PUFA) which renders this tissue very susceptible to lipid peroxidation. Studies were carried out to evaluate the effect of alpha-tocopherol in vitro on ascorbate-Fe(++) lipid peroxidation of rat testis microsomes and mitochondria. Chemiluminescence and fatty acid composition were used as an index of the oxidative destruction of lipids. Special attention was paid to the changes produced on the highly PUFA [C20:4 n6] and [C22:5 n6]. Lipid peroxidation of testis microsomes or mitochondria induced a significant decrease of both fatty acids. Total chemiluminescence was similar in both kinds of organelles when the peroxidized without (control) and with ascorbate-Fe(++) (peroxidized) groups were compared. Arachidonic acid was protected more efficiently than docosapentaenoic acid at all alpha-tocopherol concentrations tested when rat testis microsomes or mitochondria were incubated with ascorbate-Fe(++). The maximal percentage of inhibition in both organelles was approximately 70%; corresponding to an alpha-tocopherol concentration between 1 and 0.25 mM. IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.144 mM) than mitochondria (0.078 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6]+[C22:5 n6] in microsomes that in mitochondria. It is proposed that the vulnerability to lipid peroxidation of rat testis microsomes and mitochondria is different because of the different proportion of PUFA in these organelles The peroxidizability index (PI) was positively correlated with the level of long chain fatty acids. The results demonstrated the protective effect of alpha-tocopherol on lipid peroxidation in microsomes and mitochondria from rat testis.  相似文献   

8.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg weight/24 h) on ascorbate (0-0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by alpha-tocopherol (control-group: 114.32+/-14.4; vitamin E-group: 17.45+/-2.84, c.p.m.x10(-4)). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 +/-0.12; vitamin E-group: 10.52 +/-0.46). Ratios of the alpha-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

9.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the alpha-tocopherol treated group were not observed. The light emission was significantly higher in the control than in the alpha-tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the alpha-tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with alpha-tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbate-Fe2+ lipid peroxidation. The protector effect observed by alpha-tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

10.
The susceptibility of liver microsomes to lipid peroxidation was evaluated in seven species: rat, rabbit, trout, mouse, pig, cow, and horse. Lipid peroxidation was measured as thiobarbituric acid reactive substances formed in the presence of either FeCl3-ADP/ascorbate or FeCl2/H2O2 initiating systems. For rat, rabbit, and trout microsomes, the order of susceptibility to peroxidation was rat > rabbit >> trout. The lack of peroxidation in trout microsomes could be explained by high microsomal vitamin E levels. Membrane fatty acid levels differed between species. Docosahexaenoic acid predominated in the trout, arachidonic acid in the rat, and linoleic acid in the rabbit. The contribution of individual fatty acids to lipid peroxidation reflected the degree of unsaturation with docosahexaenoic > arachidonic >>> linoleic. For all species except trout, the predicted susceptibility to peroxidation, based on the response of individual fatty acids, agreed well with directly measured microsomal peroxidation. With the exception of the trout, vitamin E content ranged from 0.083–0.311 nmol/mg microsomal protein between species, and low levels did not influence susceptibility to peroxidation. Trout microsomes peroxidized only after vitamin E depletion by prolonged incubation. The data indicate that below a vitamin E threshold, species differences in membrane susceptibility to peroxidation can be reasonably predicted based only on content of individual peroxidizable fatty acids.  相似文献   

11.
The pineal hormone melatonin (N-acetyl, 5-methoxytryptamine) was recently accepted to act as an antioxidant under both in vivo and in vitro conditions. In this study, we examined the possible preventive effect of melatonin on ascorbate-Fe(2+) lipid peroxidation of rat testis microsomes and mitochondria. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:5 n6. The lipid peroxidation of testis microsomes or mitochondria produced a significant decrease of C20:4 n6 and C22:5 n6. The light emission (chemiluminescence) used as a marker of lipid peroxidation was similar in both kinds of organelles when the control and peroxidized groups were compared. Both long chain polyunsaturated fatty acids were protected when melatonin was incorporated either in microsomes or mitochondria. The melatonin concentration required to inhibit by 100% the lipid peroxidation process was 5.0 and 1.0mM in rat testis microsomes and mitochondria, respectively. IC 50 values calculated from the inhibition curve of melatonin on the chemiluminescence rates were higher in microsomes (4.98 mM) than in mitochondria (0.67 mM). The protective effect observed by melatonin in rat testis mitochondria was higher than that observed in microsomes which could be explained if we consider that the sum of C20:4 n6+C22:5 n6 in testis microsomes is two-fold greater than present in mitochondria.  相似文献   

12.
The effect of intraperitoneal administration of α-tocopherol (100 mg/kg weight/24 h) on ascorbate (0–0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by α-tocopherol (control-group: 114.32±14.4; vitamin E-group: 17.45±2.84, c.p.m.×10−4). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 ±0.12; vitamin E-group: 10.52 ±0.46). Ratios of the α-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

13.
Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5.95+/-0.73%). Under these experimental conditions, SP-A produces a smaller inhibitory effect in microsomes than in mitochondria. Additional studies of lipid peroxidation of rat lung mitochondria or microsomes using equal amounts of albumin and even higher compared to SPA were carried out. Our results indicate that under our experimental conditions, BSA was unable to inhibit lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria or microsomes, thus indicating that this effect is specific to SP-A.  相似文献   

14.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

15.
The effect of intraperitoneal administration of tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the tocopherol treated group were not observed. The light emission was significantly higher in the control than in the tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbateFe2+ lipid peroxidation. The protector effect observed by tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

16.
Changes in lipid composition and function of subcellular organelles have been described in transplanted and primary tumours. We examine here the fatty acid composition of individual phospholipids (PL) in hyperplastic nodules and primary hepatoma induced by diethylnitrosamine (DEN), compared to that of normal liver and of transplantable Yoshida AH-130 hepatoma. Phosphatidylcholine and phosphatidylethanolamine fatty acid composition in mitochondria and microsomes from primary hepatoma were markedly different from normal liver; C18:0/C18:1 ratio was lower and the ratio between monosaturated and polyunsaturated fatty acids was higher. Linoleic acid content of mitochondrial cardiolipin, usually very high in normal rat liver, was notably lower in primary hepatoma. Cholesterol/phospholipid ratio in both microsomes and mitochondria from DEN-induced hepatoma was higher than in normal liver. Hyperplastic nodules showed no changes in cholesterol content whereas modifications in fatty acid composition were already observable. These modifications of membrane structure may be related to the functional changes found in nodular cells. Changes in fatty acid composition of membrane phospholipids, occurring in both primary hepatoma and preneoplastic nodules, might be one of the causes for decreased rate of lipid peroxidation peculiar to these tissues.  相似文献   

17.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

18.
Recent studies on chicken semen have suggested that the lipid and fatty acid composition of spermatozoa may be important determinants of fertility. Phospholipid fatty acid composition, vitamin E content and in vitro susceptibility to lipid peroxidation of duck spermatozoa were investigated using GC-MS and HPLC based methods. The total phospholipid fraction of duck spermatozoa was characterized by high proportions of the n-6 polyunsaturated fatty acids arachidonic (20:4n-6), docosatetraenoic (22:4n-6) and docosapentaenoic (22:5n-6) acids but a substantial proportion of the n-3 fatty acid docosahexaenoic (22:6n-3) acid was also present. Palmitic (16:0) and stearic (18:0) fatty acids were the major saturates in sperm phospholipids. Among the phospholipid classes, phosphatidylserine (PS) had the highest degree of unsaturation due to very high proportions of 22:6n-3, 22:5n-6, 22:4n-6 and 20:4n-6, comprising together more than 75% of total fatty acids in this fraction. Phosphatidylethanolamine (PE) also contained high proportions of these four C(20-22) polyunsaturates, which together formed 60% of total fatty acids in this phospholipid. Spermatozoa and seminal plasma of duck semen were characterized by unexpectedly low content of vitamin E, being more than 4-fold lower than in chicken semen. In duck semen the major proportion of the vitamin E (>70%) was located in the spermatozoa. The very high proportion of 22:6n-3 in PS and PE fractions of duck sperm lipids and the comparatively low levels of vitamin E could predispose semen to lipid peroxidation. Nevertheless the in vitro susceptibilities to Fe2+-stimulated lipid peroxidation of duck and chicken spermatozoa were very similar. The results of the study suggest that increased superoxide dismutase and glutathione peroxidase activity and increased antioxidant activity of seminal plasma may compensate for the low levels of vitamin E to help protect the membranes of duck spermatozoa, which exhibit a high degree of unsaturation from oxidative stress.  相似文献   

19.
In the study reported here the effect of conjugated linoleic acid (CLA) and vitamin A on the polyunsaturated fatty acid composition, chemiluminescence and peroxidizability index of microsomes and mitochondria isolated from rat liver was analyzed. The effect of CLA on the polyunsaturated fatty acid composition of native microsomes was evidenced by an statistically significant p < 0.007 decrease of linoleic acid C18:2 n6, whereas in mitochondria it was observed a decrease p < 0.0001 of arachidonic acid C20:4 n6 when compared with vitamin A and control groups. Docosahexaenoic acid C22:6 n3 in mitochondria was reduced p < 0.04 in CLA and vitamin A groups when compared with control. After incubation of microsomes or mitochondria in an ascorbate (0.4 mM)-Fe++ (2.15 M) system (120 min at 37°C) it was observed that the total cpm/mg protein originated from light emission: chemiluminescence was lower in liver microsomes or mitochondria obtained from CLA group (received orally: 12.5 mg/daily during 10 days) than in the vitamin A group (received intraperitoneal injection: daily 0.195 g/kg during 10 days). CLA reduced significantly maximal induced chemiluminescence in microsomes relative to vitamin A and control groups, whereas in mitochondria the effect was observed relative to control group The polyunsaturated fatty acid composition of liver microsomes or mitochondria changed by CLA and vitamin A treatment. The polyunsaturated fatty acids mainly affected when microsomes native and peroxidized from control group were compared were linoleic, linolenic and arachidonic acids, while in vitamin A group linoleic and arachidonic acid were mainly peroxidized, whereas in CLA group only arachidonic acid was altered. In mitochondria obtained from the three groups arachidonic acid and docosahexaenoic acid showed a significant decrease when native and peroxidized groups were compared. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of fatty acids, show significant changes in the CLA group compare vitamin A and control groups. The simultaneous analysis of peroxidizability index, chemiluminescence and fatty acid composition demonstrated that CLA is more effective than vitamin A protecting microsomes or mitochondria from peroxidative damage.  相似文献   

20.
The objective of this investigation was to examine the relationship between body size, fatty acid composition and sensitivity to lipid peroxidation of mitochondria and microsomes isolated from the brain of different size bird species: manon, quail, pigeon, duck and goose, representing a 372-fold range of body mass. Fatty acids of total lipids were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The allometric study of the fatty acids present in brain mitochondria and microsomes of the different bird species showed a small number of significant allometric trends. In mitochondria the percentage of monounsaturated fatty acids, was significantly lower in the larger birds (r=-0.965; P<0.008). The significant allometric increase in 18:2 n-6; linoleic acid (r=0.986; P<0.0143), polyunsaturated (r=0.993; P<0.007) and total unsaturated (r=0.966; P<0.034) in brain microsomes but not in mitochondria may indicate a preferential incorporation of this fatty acid in the brain endoplasmic reticulum of the larger bird species. The brain of all birds studied had a high content of docosahexaenoic acid. However brain mitochondria but not microsomes isolated from all the birds analyzed showed a significant decrease of arachidonic and docosahexaenoic acids during lipid peroxidation. The allometric analyses of chemiluminescence were not statistically significant. In conclusion our results show absence of correlation between the sensitivity to lipid peroxidation of brain mitochondria and microsomes with body size and maximum life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号