首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Thiazolidinediones (TZDs) increase tissue insulin sensitivity in diabetes. Here, we hypothesize that, in adipose tissue, skeletal muscle, and heart, alterations in protein-mediated FA uptake are involved in the effect of TZDs. As a model, we used obese Zucker rats, orally treated for 16 days with 5 mg rosiglitazone (Rgz)/kg body mass/day. In adipose tissue from Rgz-treated rats, FA uptake capacity increased by 2.0-fold, coinciding with increased total contents of fatty acid translocase (FAT/CD36; 2.3-fold) and fatty acid transport protein 1 (1.7-fold) but not of plasmalemmal fatty acid binding protein, whereas only the plasmalemmal content of FAT/CD36 was changed (increase of 1.7-fold). The increase in FA uptake capacity of adipose tissue was associated with a decline in plasma FA and triacylglycerols (TAGs), suggesting that Rgz treatment enhanced plasma FA extraction by adipocytes. In obese hearts, Rgz treatment had no effect on the FA transport system, yet the total TAG content decreased, suggesting enhanced insulin sensitivity. Also, in skeletal muscle, the FA transport system was not changed. However, the TAG content remained unaltered in skeletal muscle, which coincided with increased cytoplasmic adipose-type FABP content, suggesting that increased extramyocellular TAGs mask the decline of intracellular TAG in muscle. In conclusion, our study implicates FAT/CD36 in the mechanism by which Rgz increases tissue insulin sensitivity.  相似文献   

2.
Cellular long-chain fatty acid uptake is believed to occur largely by protein-mediated transmembrane transport of fatty acids, and also by passive diffusional uptake. It is postulated that the membrane proteins function in trapping of fatty acids from extracellular sources, whereafter their transmembrane translocation occurs by passive diffusion through the lipid bilayer. The key membrane-associated proteins involved are plasma membrane fatty acid-binding protein (FABP(pm)) and fatty acid translocase (FAT/CD36). Their plasma membrane contents are positively correlated with rates of fatty acid uptake. In studies with heart and skeletal muscle we observed that FAT/CD36 is regulated acutely, in that both contraction and insulin can translocate FAT/CD36 from an intracellular depot to the sarcolemma, thereby increasing the rate of fatty acid uptake. In addition, from studies with obese Zucker rats, an established rodent model of obesity and insulin resistance, evidence has been obtained that in heart, muscle and adipose tissue FAT/CD36 is permanently relocated from an intracellular pool to the plasma membrane, resulting in increased fatty acid uptake rates in this condition. These combined observations indicate that protein-mediated fatty acid uptake is a key step in cellular fatty acid utilization, and suggest that malfunctioning of the uptake process could be a critical factor in the pathogenesis of insulin resistance.  相似文献   

3.

Background

Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle.

Methodology/Principal Findings

Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells.

Conclusion/Significance

Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.  相似文献   

4.
There is substantial molecular, biochemical and physiologic evidence that long-chain fatty acid transport involves a protein-mediated process. A number of fatty acid transport proteins have been identified, and for unknown reasons, some of these are coexpressed in the same tissues. In muscle and heart FAT/CD36 and FABPpm appear to be key transporters. Both proteins are regulated acutely (within minutes) and chronically (hours to days) by selected physiologic stimuli (insulin, AMP kinase activation). Acute regulation involves the translocation of FAT/CD36 by insulin, muscle contraction and AMP kinase activation, while FABPpm is induced to translocate by muscle contraction and AMP kinase activation, but not by insulin. Protein expression ofFAT/CD36 and FABPpm is regulated by prolonged AMP kinase activation (heart) or increased muscle contraction. Prolonged insulin exposure increases the expression of FAT/CD36 but not FABPpm. Trafficking of fatty acid transporters between an intracellular compartment(s) and the plasma membrane is altered in insulin-resistant skeletal muscle, as some FAT/CD36 is permanently relocated to plasma membrane, thereby contributing to insulin resistance due to the increased influx of fatty acids into muscle cells. Studies in FAT/CD36 null mice have revealed that this transporter is key to regulating the increase in the rate of fatty acid metabolism in heart and skeletal muscle. It appears based on a number of experiments that FAT/CD36 and FABPpm may collaborate to increase the rates of fatty acid transport, as these proteins co-immunoprecipitate.  相似文献   

5.
In this study, we investigated the hypothesis that impairments in forearm skeletal muscle free fatty acid (FFA) metabolism are present in patients with type 2 diabetes both in the overnight fasted state and during beta-adrenergic stimulation. Eight obese subjects with type 2 diabetes and eight nonobese controls (Con) were studied using the forearm balance technique and indirect calorimetry during infusion of the stable isotope tracer [U-(13)C]palmitate after an overnight fast and during infusion of the nonselective beta-agonist isoprenaline (Iso, 20 ng. kg lean body mass(-1) x min(-1)). Additionally, activities of mitochondrial enzymes and of cytoplasmatic fatty acid-binding protein (FABP) were determined in biopsies from the vastus lateralis muscle. Both during fasting and Iso infusion, the tracer balance data showed that forearm muscle FFA uptake (Con vs. type 2: fast 449+/-69 vs. 258 +/-42 and Iso 715+/-129 vs. 398+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05) and FFA release were lower in type 2 diabetes compared with Con. Also, the oxidation of plasma FFA by skeletal muscle was blunted during Iso infusion in type 2 diabetes (Con vs. type 2: Iso 446 +/- 274 vs. 16+/-70 nmol. 100 ml tissue(-1) x min(-1), P<0.05). The net forearm glycerol release was increased in type 2 diabetic subjects (P< 0.05), which points to an increased forearm lipolysis. Additionally, skeletal muscle cytoplasmatic FABP content and the activity of muscle oxidative enzymes were lowered in type 2 diabetes. We conclude that the uptake and oxidation of plasma FFA are impaired in the forearm muscles of type 2 diabetic subjects in the overnight fasted state with and without Iso stimulation.  相似文献   

6.
The impact of type 2 diabetes on the ability of muscle to accumulate and dispose of fatty acids and triglycerides was evaluated in cultured muscle cells from nondiabetic (ND) and type 2 diabetic (T2D) subjects. In the presence of 5 microM palmitate, T2D muscle cells accumulated less lipid than ND cells (11.5 +/- 1.2 vs. 15.1 +/- 1.4 nmol/mg protein, P < 0.05). Chronic treatment (4 days) with the peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist troglitazone increased palmitate accumulation, normalizing uptake in T2D cells. There were no significant differences between groups with regard to the relative incorporation of palmitate into neutral lipid species. This distribution was also unaffected by troglitazone treatment. beta-Oxidation of both long-chain (palmitate) and medium-chain (octanoate) fatty acids in T2D muscle cells was reduced by approximately 40% compared with ND cells. Palmitate oxidation occurred primarily in mitochondrial ( approximately 40-50% of total) and peroxisomal (20-30%) compartments. The diabetes-related defect in palmitate oxidation was localized to the mitochondrial component. Both palmitate and octanoate oxidation were stimulated by a series of thiazolidinediones. Oxidation in T2D muscle cells was normalized after treatment. Troglitazone increased the mitochondrial component of palmitate oxidation. Skeletal muscle cells from T2D subjects express defects in free fatty acid metabolism that are retained in vitro, most importantly defects in beta-oxidation. These defects can be corrected by treatment with PPARgamma agonists. Augmentation of fatty acid disposal in skeletal muscle, potentially reducing intramyocellular triglyceride content, may represent one mechanism for the lipid-lowering and insulin-sensitizing effects of thiazolidinediones.  相似文献   

7.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

8.
Evidence suggests that increased hydrolysis and/or uptake of triglyceride-rich lipoprotein particles in skeletal muscle can be involved in insulin resistance. We determined the steady state mRNA levels of the low-density lipoprotein-related receptor (LRP) and lipoprotein lipase (LPL) in skeletal muscle of eight healthy lean control subjects, eight type 2 diabetic patients and eight nondiabetic obese individuals. The regulation by insulin of LRP and LPL mRNA expression was also investigated in biopsies taken before and at the end of a 3 h euglycemic hyperinsulinemic clamp (insulinemia of about 1 nM). LRP mRNA was expressed in human skeletal muscle (1.3+/-0.1 amol/microg total RNA in control subjects). Type 2 diabetic patients, but not nondiabetic obese subjects, were characterized by a reduced expression of LRP (0.8+/-0.2 and 1.3+/-0.3 amol/microg total RNA in diabetic and obese patients, respectively; P<0.05 in diabetic vs. control subjects). Insulin infusion decreased LRP mRNA levels in muscle of the control subjects but not in muscle of type 2 diabetic and nondiabetic obese patients. Similar results were found when investigating the regulation of the expression of LPL. Taken together, these results did not support the hypothesis that a higher capacity for clearance or hydrolysis of circulating triglycerides in skeletal muscle is present during obesity- or type 2 diabetes-associated insulin resistance.  相似文献   

9.
FAT/CD36 is a transmembrane protein that is thought to facilitate cellular long-chain fatty acid uptake. However, surprisingly little is known about the localization of FAT/CD36 in human skeletal muscle. By confocal immunofluorescence microscopy, we demonstrate high FAT/CD36 expression in endothelial cells and weaker but significant FAT/CD36 expression in sarcolemma in human skeletal muscle. No apparent intracellular staining was observed in the muscle cells. There are indications in the literature that caveolae may be involved in the uptake of fatty acids, possibly as regulators of FAT/CD36 or other fatty acid transporters. We show that in sarcolemma, FAT/CD36 colocalizes with the muscle-specific caveolae marker protein caveolin-3, suggesting that caveolae may regulate cellular fatty acid uptake by FAT/CD36. Furthermore, we provide evidence that FAT/CD36 expression is significantly higher in type 1 compared with type 2 fibers, whereas caveolin-3 expression is significantly higher in type 2 fibers than in type 1 fibers.  相似文献   

10.
Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 muM) palmitate oxidation was decreased by 95% (P<0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P<0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.  相似文献   

11.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

12.
Insulin-resistant type 2 diabetic patients have been reported to have impaired skeletal muscle mitochondrial respiratory function. A key question is whether decreased mitochondrial respiration contributes directly to the decreased insulin action. To address this, a model of impaired cellular respiratory function was established by incubating human skeletal muscle cell cultures with the mitochondrial inhibitor sodium azide and examining the effects on insulin action. Incubation of human skeletal muscle cells with 50 and 75 microM azide resulted in 48 +/- 3% and 56 +/- 1% decreases, respectively, in respiration compared with untreated cells mimicking the level of impairment seen in type 2 diabetes. Under conditions of decreased respiratory chain function, insulin-independent (basal) glucose uptake was significantly increased. Basal glucose uptake was 325 +/- 39 pmol/min/mg (mean +/- SE) in untreated cells. This increased to 669 +/- 69 and 823 +/- 83 pmol/min/mg in cells treated with 50 and 75 microM azide, respectively (vs. untreated, both P < 0.0001). Azide treatment was also accompanied by an increase in basal glycogen synthesis and phosphorylation of AMP-activated protein kinase. However, there was no decrease in glucose uptake following insulin exposure, and insulin-stimulated phosphorylation of Akt was normal under these conditions. GLUT1 mRNA expression remained unchanged, whereas GLUT4 mRNA expression increased following azide treatment. In conclusion, under conditions of impaired mitochondrial respiration there was no evidence of impaired insulin signaling or glucose uptake following insulin exposure in this model system.  相似文献   

13.
Adiponectin and its association with insulin resistance and type 2 diabetes   总被引:1,自引:0,他引:1  
Adiponectin is an adipokine, which is expressed in adipose tissue and is thought to play an important role in glucose metabolism. Hypoadiponectinemia can cause reduction of fatty acid oxidation, decreased glucose uptake in skeletal muscle cells, and increased gluconeogenesis in hepatic cells. The level of plasma glucose can be increased. On the other hand, the decrease of fatty acid oxidation increases the level of free fatty acid (FFA), which increases the insulin resistance, and then decreases the glucose uptake, which ultimately causes increased plasma glucose and type 2 diabetes (T2D). This review describes the process from hypoadiponectinemia to T2D and the genesis of hypoadiponeetinemia at a molecular level.  相似文献   

14.
A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 +/- 0.7 kg/m2] and obese women (BMI = 37.6 +/- 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (-34%), beta-hydroxyacyl-CoA dehydrogenase (-17%), and cytochrome c oxidase (-32%) were reduced (P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% (P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation (r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.  相似文献   

15.
We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and 60%) and increased fatty acid uptake (63 and 40%, respectively). Insulin and contraction increased lean muscle palmitate esterification and oxidation 72 and 61%, respectively. In obese rat muscle, basal levels of sarcolemmal FAT/CD36 (+33%) and FABPpm (+14%) and fatty acid uptake (+30%) and esterification (+32%) were increased, whereas fatty acid oxidation was reduced (-28%). Insulin stimulation of obese rat muscle increased plasmalemmal FABPpm (+15%) but not plasmalemmal FAT/CD36, blunted fatty acid uptake and esterification, and failed to reduce fatty acid oxidation. In contracting obese rat muscle, the increases in fatty acid uptake and esterification and FABPpm translocation were normal, but FAT/CD36 translocation was impaired and fatty acid oxidation was blunted. There was no relationship between plasmalemmal fatty acid transporters and palmitate partitioning. In conclusion, fatty acid metabolism is impaired at several levels in muscles of obese Zucker rats; specifically, they are 1) insulin resistant with respect to FAT/CD36 translocation and fatty acid uptake, esterification, and oxidation and 2) contraction resistant with respect to fatty acid oxidation and FAT/CD36 translocation, but, conversely, 3) obese muscles are neither insulin nor contraction resistant at the level of FABPpm. Finally, 4) there is no evidence that plasmalemmal fatty acid transporters contribute to the channeling of fatty acids to specific metabolic destinations within the muscle.  相似文献   

16.
Oversupply and underutilization of lipid fuels are widely recognized to be strongly associated with insulin resistance in skeletal muscle. Recent attention has focused on the mechanisms underlying this effect, and defects in mitochondrial function have emerged as a potential player in this scheme. Because evidence indicates that lipid oversupply can produce abnormalities in extracellular matrix composition and matrix changes can affect the function of mitochondria, the present study was undertaken to determine whether muscle from insulin-resistant, nondiabetic obese subjects and patients with type 2 diabetes mellitus had increased collagen content. Compared with lean control subjects, obese and type 2 diabetic subjects had reduced muscle glucose uptake (P<0.01) and decreased insulin stimulation of tyrosine phosphorylation of insulin receptor substrate-1 and its ability to associate with phosphatidylinositol 3-kinase (P<0.01 and P<.05). Because it was assayed by total hydroxyproline content, collagen abundance was increased in muscle from not only type 2 diabetic patients but also nondiabetic obese subjects (0.26+/-0.05, 0.57+/-0.18, and 0.67+/- 0.20 microg/mg muscle wet wt, lean controls, obese nondiabetics, and type 2 diabetics, respectively), indicating that hyperglycemia itself could not be responsible for this effect. Immunofluorescence staining of muscle biopsies indicated that there was increased abundance of types I and III collagen. We conclude that changes in the composition of the extracellular matrix are a general characteristic of insulin-resistant muscle.  相似文献   

17.
Time-dependent effects of fatty acids on skeletal muscle metabolism   总被引:4,自引:0,他引:4  
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.  相似文献   

18.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

19.
This study was conducted to evaluate the chronic effects of eicosapentaenoic acid (EPA) on fatty acid and glucose metabolism in human skeletal muscle cells. Uptake of [14C]oleate was increased >2-fold after preincubation of myotubes with 0.6 mM EPA for 24 h, and incorporation into various lipid classes showed that cellular triacylgycerol (TAG) and phospholipids were increased 2- to 3-fold compared with control cells. After exposure to oleic acid (OA), TAG was increased 2-fold. Insulin (100 nM) further increased the incorporation of [14C]oleate into all lipid classes for EPA-treated myotubes. Fatty acid beta-oxidation was unchanged, and complete oxidation (CO2) decreased in EPA-treated cells. Basal glucose transport and oxidation (CO2) were increased 2-fold after EPA, and insulin (100 nM) stimulated glucose transport and oxidation similarly in control and EPA-treated myotubes, whereas these responses to insulin were abolished after OA treatment. Lower concentrations of EPA (0.1 mM) also increased fatty acid and glucose uptake. CD36/FAT (fatty acid transporter) mRNA expression was increased after EPA and OA treatment compared with control cells. Moreover, GLUT1 expression was increased 2.5-fold by EPA, whereas GLUT4 expression was unchanged, and activities of the mitogen-activated protein kinase p38 and extracellular signal-regulated kinase were decreased after treatment with OA compared with EPA. Together, our data show that chronic exposure of myotubes to EPA promotes increased uptake and oxidation of glucose despite a markedly increased fatty acid uptake and synthesis of complex lipids.  相似文献   

20.
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号