首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomass washed out from an expanded granular sludge bed (EGSB) reactor treating oleate (82%, w/w) was inves-tigated. This biomass had a 50% higher activity compared to granules present in the EGSB reactor. Recirculationof washed out biomass into reactor remarkably improved the treatment performance. The highest methane conversion rate from oleate, 300 mg CH4-COD/g VSS.d, was achieved at a concentration of 4 g oleate-COD/l and a volumetric loading rate of 8 g COD/l.d. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
《Process Biochemistry》2007,42(8):1173-1179
The performance of an expanded granular sludge bed (EGSB) reactor coupled with zeolite bed filtration (ZBF) for treating low strength domestic wastewater was monitored at 35 °C for 7 months. The whole operation period of EGSB system was divided into five phases. Each phase ran at up-flow velocity (m/h) of 0.51, 1.02, 3.57, 2.05, 9.69, and hydraulic retention time (HRT) (h) of 6, 3, 0.87, 1.5, 0.32, respectively. The influent chemical oxygen demand (COD) was kept approximate at 150 ± 100 mg/L. Under these conditions, the COD removal efficiency of using EGSB system in five phases reached to 81.08, 57.94, 82.79, 56.58 and 79.52%, respectively. Moreover, since nutrients such as NH4+ and PO43− were only removed to a limited extent by EGSB, additional treatment is required. The ZBF was employed in phase 2 as a post-treatment following EGSB. NH4+ and PO43− concentrations were decreased by 100%, respectively, in the first 2 or 3 d using fresh zeolite. The simple design and excellent treatment performance indicated that this system could be used as a novel Sewage Integrated Treatment System (SITS) for developing country especially in a tropical area.  相似文献   

3.
The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.  相似文献   

4.

Objectives

To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l?1) on the performance of EGSB reactors (R15 and R25, respectively) for H2 production.

Results

A decrease in the HRT from 8 to 4 h favored the H2 yield and H2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H2 g COD?1 and 0.23 ± 0.024 l H2 h?1 l?1, respectively. H2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H2 g COD?1 and 0.31 ± 0.032 l H2 h?1 l?1, respectively. The main metabolites produced were butyric, acetic and lactic acids.

Conclusions

The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.
  相似文献   

5.
Low strength wastewater having chemical oxygen demands (COD) concentrations of 1000, 800, 600 and 400mg/l were treated at 35, 25, 20 and 15¡C using four anaerobic sequencing batch reactors (ASBRs). Reactor 1 was operated at hydraulic retention time (HRT) of 48h, reactor 2 at 24h HRT, reactor 3 at 16h HRT and reactor 4 at 12h HRT. 80 to 99% soluble COD was removed at the various operational conditions, except during 15¡C treatment of 1000 and 800mg/l COD wastewater at 12h HRT and 1000mg/l COD wastewater at 16h HRT, where excessive loss of biological solids occurred. The ASBR process can be an effective process for the treatment of low concentrated wastewaters which are usually treated aerobically with large amount of sludge production and higher energy expenditures.  相似文献   

6.
Liu Q  Zhang X  Yu L  Zhao A  Tai J  Liu J  Qian G  Xu ZP 《Bioresource technology》2011,102(9):5411-5417
This research for the first time investigated hydrogen production from the fresh leachate originated from municipal solid wastes. We found that fermentation of the leachate generated H2 and was very much enhanced in the presence of extra phosphate in the batch reactor. The continuous expanded granular sludge bed (EGSB) reactor started to generate H2 at day 20 and continued to 176 days with 120 mg/l of extra phosphate present. The highest chemical oxygen demand (COD) removal efficiency (66.9%) was achieved at liquid up-flow velocity of 3.7 m/h and hydraulic retention time of 12 h. Under proposed optimal operation conditions, the mean H2 production rate reached up to 2155 ml/(l day). We also found that over 80% liquid metabolites were acetic acid and ethanol, suggesting the ethanol-type fermentation was dominant in the bioreactor. These findings indicate that the fresh leachate can be used as the source for continuous hydrogen production.  相似文献   

7.
Fu Z  Zhang Y  Wang X 《Bioresource technology》2011,102(4):3748-3753
In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O3-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O3-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7 h, 9.2 h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O3-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O3-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O3-BAF combine process for textile wastewater treatment.  相似文献   

8.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

9.
Thermophilic sulfate and sulfite reduction was studied in lab-scale Expanded Granular Sludge Bed (EGSB) reactors operated at 65°C and pH 7.5 with methanol as the sole carbon and energy source for the sulfate- and sulfite-reducing bacteria. At a hydraulic retention time (HRT) of 10 h, maximum sulfite and sulfate elimination rates of 5.5 gSO3 2- L-1 day-1 (100 % elimination) and 5.7 gSO4 2- -1 day-1 (55% elimination) were achieved, resulting in an effluent sulfide concentration of approximately 1800 mgS L-1. Sulfate elimination was limited by the sulfide concentration, as stripping of H2S from the reactor with nitrogen gas was found to increase the sulfate elimination rate to 9.9 gSO4 2- L-1 day-1 (100 % elimination). At a HRT of 3 h, maximum achievable sulfite and sulfate elimination rates were even 18 gSO3 2- L-1 day-1 (100% elimination) and 11 gSO4 2- L-1 day-1(50% elimination). At a HRT of 3 h, the elimination rate was limited by the biomass retention of the system. 5.5 ± 1.8% of the consumed methanol was converted to acetate, which was not further degraded by sulfate reducing bacteria present in the sludge. The acetotrophic activity of the sludge could not be stimulated by cultivating the sludge for 30 days under methanol-limiting conditions. Omitting cobalt as trace element from the influent resulted in a lower acetate production rate, but it also led to a lower sulfate reduction rate. Sulfate degradation in the reactor could be described by zeroth order kinetics down to a threshold concentration of 0.05 g L-1, while methanol degradation followed Michaelis-Menten kinetics with a Km of 0.037 gCOD L-1.  相似文献   

10.
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium sp. LS2 for continuous hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. Palm oil mill effluent (POME) was used as the substrate carbon source. The optimal amount of PEG-immobilized cells for anaerobic hydrogen production was 12% (w/v) in the UASB reactor. The UASB reactor containing immobilized cells was operated at varying hydraulic retention times (HRT) that ranged from 24 to 6 h at 3.3 g chemical oxygen demand (COD)/L/h organic loading rate (OLR), or at OLRs that ranged from 1.6 to 6.6 at 12 h HRT. The best volumetric hydrogen production rate of 336 mL H2/L/h (or 15.0 mmol/L/h) with a hydrogen yield of 0.35 L H2/g CODremoved was obtained at a HRT of 12 h and an OLR of 5.0 g COD/L/h. The average hydrogen content of biogas and COD reduction were 52% and 62%, respectively. The major soluble metabolites during hydrogen fermentation were butyric acid followed by acetic acid. It is concluded that the PEG-immobilized cell system developed in this work has great potential for continuous hydrogen production from real wastewater (POME) using the UASB reactor.  相似文献   

11.
The effects of lowering the operational pH from 6 to 5 on mesophilic (30 °C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD (lreactor d)−1 and at a COD/SO42− ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, respectively. Acidification was complete in both reactors at pH 6 and the lowering of the operational pH to 5 did not affect the acidification efficiency in the CSTR but decreased the acidification efficiency of the UASB to 72%. The decrease to pH 5 caused an increase in the effluent butyrate and ethanol concentrations in both reactors. Lowering the pH from 6 to 5 caused a decrease in sulfate reduction efficiencies in both reactors, from 43% to 25% in the CSTR and from 95% to 34% in the UASB reactor. The acidification and sulfate reduction efficiencies at pH 5 could be increased to 94% and 67%, respectively, by increasing the HRT of the UASB reactor to 24 h.  相似文献   

12.
The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
In this study, the ammonia removal efficiency for high ammonia-containing wastewaters was evaluated via partial nitrification. A nitrifier biocommunity was first enriched in a fill-and-draw batch reactor with a specific ammonium oxidation rate of 0.1 mg NH4 -N/mg VSS.h. Partial nitrification was established in a chemostat at a hydraulic retention time (HRT) of 1.15 days, which was equal to the sludge retention time (SRT). The results showed that the critical HRT (SRT) was 1.0 day for the system. A maximum specific ammonium oxidation rate was achieved as 0.280 mg NH4 -N/mg VSS.h, which is 2.8-fold higher than that obtained in the fill-and-draw reactor, indicating that more adaptive and highly active ammonium oxidizers were enriched in the chemostat. Dynamic modeling of partial nitrification showed that the maximum growth rate for ammonium oxidizers was found to be 1.22 day−1. Modeling studies also validated the recovery period as 10 days.  相似文献   

14.
In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH4/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH4/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer.  相似文献   

15.
A pilot-scale hybrid hydrolysis acidification reactor (HHAR) with periodic water allocation mode operation followed by sequencing batch reactor (SBR) in anoxic and aerobic metabolic function was evaluated for the treatment of low-biodegradable combined industrial and domestic wastewater. The HHAR combines the advantages of both the UASB reactor and AF, omitting the three-phase separator. Furthermore, it has lower average up-flow velocity (0.38–0.92 m/h) and higher periodic up-flow velocity (6 m/h), which made the reactor keep higher MLSS concentration (more than 10,000 mg/L) and sludge-bed is in periodic “expansion-sedimentation-expansion” state. When HRT less than 10 h, the B/C variation was positive and reached the maximum value of 0.07 at 8 h. SBR with a total cycle period of 4.5 h was applied as the post-treatment process to remove residual COD, NH3-N and TN. At steady stage, the pilot-scale SBR effluent COD, NH3-N and TN concentration was 65, 0.75 and 17.71 mg/L, corresponding in this case to full-scale SBR plant effluent was 93, 16.4 and 34 mg/L. Comparison results indicated that the application of HHAR–SBR system to treat combined industrial and domestic wastewater can improve effluent quality significantly.  相似文献   

16.
《Process Biochemistry》2004,39(10):1257-1267
A comparative study of a fermentation process for total volatile fatty acids (TVFA) production using pilot-scale fixed-bed (FAS) and suspended biomass (FER) reactors in which similar operational conditions was carried out. The influence of the changes of ambient temperatures at fixed operational conditions was also studied. Oxidation–reduction potential (ORP) increased and effluent pH decreased as the hydraulic retention time (HRT) decreased, which was favourable for TVFA production. Equations describing the ORP and pH variations with the HRT were obtained. ORP variation with HRT for FAS and FER reactors followed a logarithmic function with a regression coefficient, R2, equal to 0.98. The variations of pH with HRT followed polynomial functions with regression coefficients of 0.96 and 0.98 for FAS and FER reactors, respectively. Hydrolysis process increased with the experiment duration. At the beginning of the experiment, effluent soluble COD (SCOD) decreased with respect to the influent but further effluent SCOD increased showing higher values compared to the influent. Cold temperatures were more favourable than summer temperatures for the accumulation of TVFA at the liquid effluent. The FAS reactor was more effective in the production of TVFA than the FER reactor. The maximum yields of TVFA were obtained at an organic volumetric loading rate (BV) of 1.9 g COD/l per day, corresponding to an HRT of 3.4 h, for both reactors. A maximum increase of ammonia and phosphorus was observed at the maximum value of HRT coinciding with an increase of pH and a decrease of ORP, as could be previously observed. The average P/SCOD ratio for the influent and effluent were 0.06 and 0.05, respectively, for FAS and FER reactors. The average Ammonia/SCOD ratio for the influent and effluent were 0.15 and 0.14, respectively. These results demonstrate that effluent quality was improved by the treatment employed in case a further process of nutrient removal is carried out.  相似文献   

17.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity.  相似文献   

18.
The effects of lowering the operational pH from 6 to 5 on mesophilic (30 °C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD (lreactor d)−1 and at a COD/SO42− ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, respectively. Acidification was complete in both reactors at pH 6 and the lowering of the operational pH to 5 did not affect the acidification efficiency in the CSTR but decreased the acidification efficiency of the UASB to 72%. The decrease to pH 5 caused an increase in the effluent butyrate and ethanol concentrations in both reactors. Lowering the pH from 6 to 5 caused a decrease in sulfate reduction efficiencies in both reactors, from 43% to 25% in the CSTR and from 95% to 34% in the UASB reactor. The acidification and sulfate reduction efficiencies at pH 5 could be increased to 94% and 67%, respectively, by increasing the HRT of the UASB reactor to 24 h.  相似文献   

19.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended.  相似文献   

20.
Ethylene–vinyl acetate (EVA) copolymer was used to immobilize H2-producing sewage sludge for H2 production in a three-phase fluidized bed reactor (FBR). The FBR with an immobilized cell packing ratio of 10% (v/v) and a liquid recycle rate of 5 l/min (23% bed expansion) was optimal for dark H2 fermentation. The performance of the FBR reactor fed with sucrose-based synthetic medium was examined under various sucrose concentration (Cso) and hydraulic retention time (HRT). The best volumetric H2 production rate of 1.80 ± 0.02 H2 l/h/l occurred at Cso = 40 g COD/l and 2 h HRT, while the optimal H2 yield (4.26 ± 0.04 mol H2/mol sucrose) was obtained at Cso = 20 g COD/l and 6 h HRT. The H2 content in the biogas was stably maintained at 40% or above. The primary soluble metabolites were butyric acid and acetic acid, as both products together accounted for 74–83% of total soluble microbial products formed during dark H2 fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号