首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an update of our method for systematic detection and evaluation of potential helix-turn-helix DNA-binding motifs in protein sequences [Dodd, I. and Egan, J. B. (1987) J. Mol. Biol. 194, 557-564]. The new method is considerably more powerful, detecting approximately 50% more likely helix-turn-helix sequences without an increase in false predictions. This improvement is due almost entirely to the use of a much larger reference set of 91 presumed helix-turn-helix sequences. The scoring matrix derived from this reference set has been calibrated against a large protein sequence database so that the score obtained by a sequence can be used to give a practical estimation of the probability that the sequence is a helix-turn-helix motif.  相似文献   

2.
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.  相似文献   

3.
Sequence-based approach for motif prediction is of great interest and remains a challenge. In this work, we develop a local combinational variable approach for sequence-based helix-turn-helix (HTH) motif prediction. First we choose a sequence data set for 88 proteins of 22 amino acids in length to launch an optimized traversal for extracting local combinational segments (LCS) from the data set. Then after LCS refinement, local combinational variables (LCV) are generated to construct prediction models for HTH motifs. Prediction ability of LCV sets at different thresholds is calculated to settle a moderate threshold. The large data set we used comprises 13 HTH families, with 17 455 sequences in total. Our approach predicts HTH motifs more precisely using only primary protein sequence information, with 93.29% accuracy, 93.93% sensitivity and 92.66% specificity. Prediction results of newly reported HTH-containing proteins compared with other prediction web service presents a good prediction model derived from the LCV approach. Comparisons with profile-HMM models from the Pfam protein families database show that the LCV approach maintains a good balance while dealing with HTH-containing proteins and non-HTH proteins at the same time. The LCV approach is to some extent a complementary to the profile-HMM models for its better identification of false-positive data. Furthermore, genome-wide predictions detect new HTH proteins in both Homo sapiens and Escherichia coli organisms, which enlarge applications of the LCV approach. Software for mining LCVs from sequence data set can be obtained from anonymous ftp site ftp://cheminfo.tongji.edu.cn/LCV/freely.  相似文献   

4.
5.
6.
7.
Knowledge of three dimensional structure is essential to understand the function of a protein. Although the overall fold is made from the whole details of its sequence, a small group of residues, often called as structural motifs, play a crucial role in determining the protein fold and its stability. Identification of such structural motifs requires sufficient number of sequence and structural homologs to define conservation and evolutionary information. Unfortunately, there are many structures in the protein structure databases have no homologous structures or sequences. In this work, we report an SVM method, SMpred, to identify structural motifs from single protein structure without using sequence and structural homologs. SMpred method was trained and tested using 132 proteins domains containing 581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 proteins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 structural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach for the length deviant superfamilies and single member superfamilies. This result suggests the usefulness of our approach for facilitating the identification of structural motifs in protein structure in the absence of sequence and structural homologs. The dataset and executable for the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SMpred.htm.  相似文献   

8.
We present an algorithm to detect remote homology, which arises through circular permutation and discontinuous domains. It is also helpful in detecting small domain proteins that are characterized by few conserved residues. The input to the algorithm is a set of multiply aligned protein sequence profiles. This method, coded as FASSM, examines the sequence conservation and positions of protein family signatures or motifs for the annotation of protein sequences and to facilitate the analysis of their domains. The overall coverage of FASSM is 93% in comparison to other validation tools like HMM and IMPALA. The method is especially useful for difficult relationships such as discontinuous domains during whole-genome surveys and is demonstrated to perform accurate family associations at sequence identities as low as 15%.  相似文献   

9.
Distant homologies between proteins are often discovered only after three-dimensional structures of both proteins are solved. The sequence divergence for such proteins can be so large that simple comparison of their sequences fails to identify any similarity. New generation of sensitive alignment tools use averaged sequences of entire homologous families (profiles) to detect such homologies. Several algorithms, including the newest generation of BLAST algorithms and BASIC, an algorithm used in our group to assign fold predictions for proteins from several genomes, are compared to each other on the large set of structurally similar proteins with little sequence similarity. Proteins in the benchmark are classified according to the level of their similarity, which allows us to demonstrate that most of the improvement of the new algorithms is achieved for proteins with strong functional similarities, with almost no progress in recognizing distant fold similarities. It is also shown that details of profile calculation strongly influence its sensitivity in recognizing distant homologies. The most important choice is how to include information from diverging members of the family, avoiding generating false predictions, while accounting for entire sequence divergence within a family. PSI-BLAST takes a conservative approach, deriving a profile from core members of the family, providing a solid improvement without almost any false predictions. BASIC strives for better sensitivity by increasing the weight of divergent family members and paying the price in lower reliability. A new FFAS algorithm introduced here uses a new procedure for profile generation that takes into account all the relations within the family and matches BASIC sensitivity with PSI-BLAST like reliability.  相似文献   

10.
Immunoinformatics is an emerging new field that benefits from computational analyses and tools that facilitate the understanding of the immune system. A large number of immunoinformatics resources such as immune-related databases and analysis software are available through the World Wide Web for the benefit of the research community. However, immunoinformatics developments have sometimes remained isolated from mainstream bioinformatics. Therefore, there is clearly a need for integration, which will empower the exchange of data and annotations within the scientific community in a quick and efficient fashion. Here, we have chosen the Distributed Annotation System (DAS), for integrating in house annotations on experimental and predicted HLA I-restriction elements of CD8 T-cell epitopes with sequence and structural information.  相似文献   

11.
The occurrences of two recurrent motifs in ribosomal RNA sequences, the Kink-turn and the C-loop, are examined in crystal structures and systematically compared with sequence alignments of rRNAs from the three kingdoms of life in order to identify the range of the structural and sequence variations. Isostericity Matrices are used to analyze structurally the sequence variations of the characteristic non-Watson–Crick base pairs for each motif. We show that Isostericity Matrices for non-Watson–Crick base pairs provide important tools for deriving the sequence signatures of recurrent motifs, for scoring and refining sequence alignments, and for determining whether motifs are conserved throughout evolution. The systematic use of Isostericity Matrices identifies the positions of the insertion or deletion of one or more nucleotides relative to the structurally characterized examples of motifs and, most importantly, specifies whether these changes result in new motifs. Thus, comparative analysis coupled with Isostericity Matrices allows one to produce and refine structural sequence alignments. The analysis, based on both sequence and structure, permits therefore the evaluation of the conservation of motifs across phylogeny and the derivation of rules of equivalence between structural motifs. The conservations observed in Isostericity Matrices form a predictive basis for identifying motifs in sequences.  相似文献   

12.
13.
Rangwala H  Karypis G 《Proteins》2008,72(3):1005-1018
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this article focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared with the profile-to-profile scoring schemes. We also show that for protein pairs with low sequence similarity (less than 12% sequence identity) these new local structural features alone or in conjunction with profile-based information lead to alignments that are considerably accurate than those obtained by schemes that use only profile and/or predicted secondary structure information.  相似文献   

14.
15.
Specific gene expression regulation strategy using antisense oligonucleotides occupy significant space in recent clinical trials. The therapeutical potential of oligos lies in the identification and prediction of accurate oligonucleotides against specific target mRNA. In this work we present a computational method that is built on Artificial Neural Network (ANN) which could recognize and predict oligonucleotides effectively. In this study first we identified 11 major parameters associated with oligo:mRNA duplex linkage. A feed forward multilayer perceptron ANN classifier is trained with a set of experimentally proven feature vectors. The classifier gives an exact prediction of the input sequences under 2 classes – oligo or non-oligo. On validation, our tool showed comparatively significant accuracy of 92.48% with 91.7% sensitivity and 92.09% specificity. This study was also able to reveal the relative impact of individual parameters we considered on antisense oligonucleotide predictions.  相似文献   

16.
RNA structural motifs are the building blocks of the complex RNA architecture. Identification of non-coding RNA structural motifs is a critical step towards understanding of their structures and functionalities. In this article, we present a clustering approach for de novo RNA structural motif identification. We applied our approach on a data set containing 5S, 16S and 23S rRNAs and rediscovered many known motifs including GNRA tetraloop, kink-turn, C-loop, sarcin-ricin, reverse kink-turn, hook-turn, E-loop and tandem-sheared motifs, with higher accuracy than the state-of-the-art clustering method. We also identified a number of potential novel instances of GNRA tetraloop, kink-turn, sarcin-ricin and tandem-sheared motifs. More importantly, several novel structural motif families have been revealed by our clustering analysis. We identified a highly asymmetric bulge loop motif that resembles the rope sling. We also found an internal loop motif that can significantly increase the twist of the helix. Finally, we discovered a subfamily of hexaloop motif, which has significantly different geometry comparing to the currently known hexaloop motif. Our discoveries presented in this article have largely increased current knowledge of RNA structural motifs.  相似文献   

17.
Visualization of nucleic acid sequence structural information   总被引:3,自引:0,他引:3  
Several interactive Pascal programs have been written for theanalysis and display of structural information in nucleic acidsequences. Layout procedures were developed to display the homologyand repeat matrices of a sequence and to predict and displaythe secondary structure of RNA/DNA molecules free of overlapand to predict and display internal repeats. No special plottingdevices are required because the output is adapted to line printers.Sequences from several DNA database systems can be used as input.These programs are part of a general nucleic acid sequence analysispackage. Received on December 9, 1984; accepted on January 11, 1985  相似文献   

18.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.  相似文献   

19.
MOTIVATION: We introduce the iRMSD, a new type of RMSD, independent from any structure superposition and suitable for evaluating sequence alignments of proteins with known structures. RESULTS: We demonstrate that the iRMSD is equivalent to the standard RMSD although much simpler to compute and we also show that it is suitable for comparing sequence alignments and benchmarking multiple sequence alignment methods. We tested the iRMSD score on 6 established multiple sequence alignment packages and found the results to be consistent with those obtained using an established reference alignment collection like Prefab. AVAILABILITY: The iRMSD is part of the T-Coffee package and is distributed as an open source freeware (http://www.tcoffee.org/).  相似文献   

20.
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号