首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
MacroH2A1 is a histone variant that is found as a component of the inactive X chromosome where it is detected as a dense accumulation called a macrochromatin body (MCB). Macrochromatin bodies co-localize with Xist RNA, which is an untranslated RNA that is expressed exclusively from the inactive X chromosome of placental mammals. However, no studies to date have investigated whether Xist RNA expression is necessary or sufficient to cause the formation of MCBs. Here we show that expression of Xist RNA is sufficient to cause the formation of MCBs even when Xist is expressed from an inducible transgene at ectopic autosomal sites. Macrochromatin bodies form at sites of transgenic Xist expression in differentiating mouse ES cell lines and transgenic fibroblasts, but MCBs cannot form in undifferentiated ES cells even after prolonged Xist expression. The kinetics of MCB formation revealed that Xist expression precedes MCB formation and that differentiating ES cells undergo a rapid and synchronous transition that renders them competent to form MCBs. Once MCBs have formed, continued expression of Xist is required for their maintenance. These results show that Xist RNA and macroH2A1 function in a common pathway. Expression of Xist in a permissive nuclear environment is sufficient to initiate a chromatin-remodeling event culminating in the incorporation of macroH2A1. The results also strongly suggest the existence of additional regulatory factors for X inactivation that are regulated developmentally. In addition, we present evidence that macroH2A1 density is not simply a measure of the general degree of DNA compaction.  相似文献   

2.
In mammals X inactivation is initiated by expression of Xist RNA and involves the recruitment of Polycomb repressive complex 1 (PRC1) and 2 (PRC2), which mediate chromosome-wide ubiquitination of histone H2A and methylation of histone H3, respectively. Here, we show that PRC1 recruitment by Xist RNA is independent of gene silencing. We find that Eed is required for the recruitment of the canonical PRC1 proteins Mph1 and Mph2 by Xist. However, functional Ring1b is recruited by Xist and mediates ubiquitination of histone H2A in Eed deficient embryonic stem (ES) cells, which lack histone H3 lysine 27 tri-methylation. Xist expression early in ES cell differentiation establishes a chromosomal memory, which allows efficient H2A ubiquitination in differentiated cells and is independent of silencing and PRC2. Our data show that Xist recruits PRC1 components by both PRC2 dependent and independent modes and in the absence of PRC2 function is sufficient for the establishment of Polycomb-based memory systems in X inactivation.  相似文献   

3.
4.
5.
6.
Xist is the trigger for X inactivation in female mammals. The long noncoding Xist RNA localizes along one of the two female X chromosomes and initiates chromosome-wide silencing in the early embryo. In differentiated cells, Xist becomes dispensable for the maintenance of the inactive X, and its function for initiation of silencing is lost. How Xist mediates gene repression remains an open question. Here, we use an inducible Xist allele in adult mice to identify cells in which Xist can cause chromosome-wide silencing. We show that Xist has the ability to initiate silencing in immature hematopoietic precursor cells. In contrast, hematopoietic stem cells and mature blood cells are unable to initiate ectopic X inactivation. This indicates that pathways critical for silencing are transiently activated in hematopoietic differentiation. Xist-responsive cell types in normal female mice show a change of chromatin marks on the inactive X. However, dosage compensation is maintained throughout hematopoiesis. Therefore, Xist can initiate silencing in precursors with concomitant maintenance of dosage compensation. This suggests that Xist function is restricted in development by the limited activity of epigenetic pathways rather than by a change in the responsiveness of chromatin between embryonic and differentiated cell types.  相似文献   

7.
8.
9.
10.
Histone variant macroH2A1 (macroH2A1) contains an NH(2)-terminal domain that is highly similar to core histone H2A and a larger COOH-terminal domain of unknown function. MacroH2A1 is expressed at similar levels in male and female embryonic stem (ES) cells and adult tissues, but a portion of total macroH2A1 protein localizes to the inactive X chromosomes (Xi) of differentiated female cells in concentrations called macrochromatin bodies. Here, we show that centrosomes of undifferentiated male and female ES cells harbor a substantial store of macroH2A1 as a nonchromatin-associated pool. Greater than 95% of centrosomes from undifferentiated ES cells contain macroH2A1. Cell fractionation experiments confirmed that macroH2A1 resides at a pericentrosomal location in close proximity to the known centrosomal proteins gamma-tubulin and Skp1. Retention of macroH2A1 at centrosomes was partially labile in the presence of nocodazole suggesting that intact microtubules are necessary for accumulation of macroH2A1 at centrosomes. Upon differentiation of female ES cells, Xist RNA expression became upregulated and monoallelic as judged by fluorescent in situ hybridization, but early Xist signals lacked associated macroH2A1. Xi acquired macroH2A1 soon thereafter as indicated by the colocalization of Xist RNA and macroH2A1. Accumulation of macroH2A1 on X chromosomes occurred with a corresponding loss of centrosomal macroH2A1. Our results define a sequence for the loading of macroH2A1 on the Xi and place this event in the context of differentiation and Xist expression. Furthermore, these results suggest a role for the centrosome in the X inactivation process.  相似文献   

11.
12.
A counting process senses the X chromosome/autosome ratio and ensures that X chromosome inactivation (XCI) initiates in the female (XX) but not in the male (XY) mouse embryo. Counting is regulated by the X-inactivation centre, which contains the Xist gene. Deleting 65 kb 3' to Xist in XO embryonic stem (ES) cells affects counting and results in inappropriate XCI upon differentiation. We show here that normal counting can be rescued in these deleted ES cells using cre/loxP re-insertion, and refine the location of elements controlling counting within a 20 kb bipartite domain. Furthermore, we show that the 65 kb deletion also leads to inappropriate XCI in XY differentiated ES cells, which excludes the involvement of sex-specific mechanisms in the initiation of XCI. At the chromatin level, we have found that the Xist gene corresponds to a peak of H3 Lys-4 dimethylation, which is dramatically and specifically affected by the deletion 3' to Xist. Our results raise the possibility that H3 Lys-4 dimethylation within Xist may be functionally implicated in the counting process.  相似文献   

13.
Xist RNA expression, methylation of CpG islands, and hypoacetylation of histone H4 are distinguishing features of inactive X chromatin. Here, we show that these silencing mechanisms act synergistically to maintain the inactive state. Xist RNA has been shown to be essential for initiation of X inactivation, but not required for maintenance. We have developed a system in which the reactivation frequency of individual X-linked genes can be assessed quantitatively. Using a conditional mutant Xist allele, we provide direct evidence for that loss of Xist RNA destabilizes the inactive state in somatic cells, leading to an increased reactivation frequency of an X-linked GFP transgene and of the endogenous hypoxanthine phosphoribosyl transferase (Hprt) gene in mouse embryonic fibroblasts. Demethylation of DNA, using 5-azadC or by introducing a mutation in Dnmt1, and inhibition of histone hypoacetylation using trichostatin A further increases reactivation in Xist mutant fibroblasts, indicating a synergistic interaction of X chromosome silencing mechanisms.  相似文献   

14.
15.
16.
In XX female mammals a single X chromosome is inactivated early in embryonic development, a process that is required to equalise X-linked gene dosage relative to XY males. X inactivation is regulated by a cis-acting master switch, the Xist locus, the product of which is a large non-coding RNA that coats the chromosome from which it is transcribed, triggering recruitment of chromatin modifying factors that establish and maintain gene silencing chromosome wide. Chromosome coating and Xist RNA-mediated silencing remain poorly understood, both at the level of RNA sequence determinants and interacting factors. Here, we describe analysis of a novel targeted mutation, Xist(INV), designed to test the function of a conserved region located in exon 1 of Xist RNA during X inactivation in mouse. We show that Xist(INV) is a strong hypomorphic allele that is appropriately regulated but compromised in its ability to silence X-linked loci in cis. Inheritance of Xist(INV) on the paternal X chromosome results in embryonic lethality due to failure of imprinted X inactivation in extra-embryonic lineages. Female embryos inheriting Xist(INV) on the maternal X chromosome undergo extreme secondary non-random X inactivation, eliminating the majority of cells that express the Xist(INV) allele. Analysis of cells that express Xist(INV) RNA demonstrates reduced association of the mutant RNA to the X chromosome, suggesting that conserved sequences in the inverted region are important for Xist RNA localisation.  相似文献   

17.
18.
19.
Xist function: bridging chromatin and stem cells   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号