首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1. This study quantified patterns of macroinvertebrate secondary production and stored benthic organic matter along a gradient of pollution and habitat channelisation over a 3‐km reach of Goosefare Brook, a first‐order stream in southern Maine (U.S.A.). 2. Whole‐community invertebrate production decreased from 26.4 g ash‐free dry mass (AFDM) m−2 year−1 at the reference station to 1.1 g AFDM m−2 year−1 at stations with the greatest levels of pollution. Production decreased along the pollution gradient for most taxa, although decreases were partly offset by production increases in tolerant taxa. Biomass turnover rates (P/B) were less affected by the stresses than was production. 3. Differences in functional characteristics of the community were evident at stations with channelised habitat, but overall production declined in a linear pattern that mirrored the pollution gradient. Stored organic matter showed a decline along the gradient, but was also lower at channelised stations. Populations of taxa with documented pollution tolerance were more likely to maintain or increase production and P/B. 4. Decreasing biomass because of decreasing stored organic matter and lethal effects of pollutants resulted in shifts in the pathways of energy flow observed at stations exposed to moderate physical or chemical stress, to the loss of most taxa and an extreme (96%) decrease in production at the stations receiving the highest levels of metal pollution. 5. The shifting prominence of different taxa along a continuum of stress in Goosefare Brook shows that describing the nature of an impairment in a functional context requires consideration of chemical stressors, habitat alterations and food resources.  相似文献   

2.
1. Annual production was estimated for macroinvertebrate communities of principle habitats along a first- to seventh-order river continuum in the southern Appalachian Mountains (U.S.A.). Annual production was relatively low in depositional habitats, pebble/gravel substrata, and on cobble devoid of plant biomass (mosses and hydrophytes). Production was greater in bedrock habitats and greatest on hydrophyte-covered cobble, with estimates reaching 364 g AFDM (ash-free dry mass)m–2 yr–1 in a sixth-order river reach. Annual production in depositional habitats was correlated to standing crops of benthic organic material (BOM) in low-order stream reaches but not in higher-order reaches, indicating differences in BOM availability with stream size. In cobble, pebble/gravel and bedrock habitats production was significantly correlated to standing crops of aquatic plants, which can stabilize substrata and enhance access of collector-filtering invertebrates to entrained food resources. 2. By accounting for proportional availability of habitats along the continuum, estimates of total production ranged from 5 to 154 g AFDM m–2 yr–1, and increased significantly with stream size. Annual production estimated for sixth- and seventh-order reaches of the continuum were amongst the highest reported thus far for lotic systems. Organization of the benthic community along the continuum, based on production estimates for individual functional feeding-groups, generally supported predictions of the River Continuum Concept (RCC): shredder contributions were greatest in low-order reaches and declined downstream; scraper percentages were greatest in the middle of the continuum; collector-filterer contributions increased with increasing stream size. Longitudinal trends for collector-gatherers and predators did not support RCC predictions; these groups appeared to be influenced by localized changes in habitat availability and occurrence of vertebrate predators along the continuum.  相似文献   

3.
1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring‐fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m?2 year?1, macrophyte production of 15 g AFDM m?2 year?1 and algal production of 400 g AFDM m?2 year?1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7–34 g AFDM m?2 year?1, macrophyte production of 118–425 g AFDM m?2 year?1 and algal production of 640–900 g AFDM m?2 year?1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.  相似文献   

4.
1. We measured responses in macroinvertebrate secondary production after large wood additions to three forested headwater streams in the Upper Peninsula of Michigan. These streams had fine‐grained sediments and low retention capacity due to low amounts of in‐channel wood from a legacy of past logging. We predicted that wood addition would increase macroinvertebrate secondary production by increasing exposed coarse substrate and retention of organic matter. 2. Large wood (25 logs) was added haphazardly to a 100‐m reach in each stream, and a 100‐m upstream reach served as control; each reach was sampled monthly, 1 year before and 2 years after wood addition (i.e. BACI design). Macroinvertebrate secondary production was measured 1 year after wood addition in two habitat types: inorganic sediments of the main channel and debris accumulations of leaf litter and small wood. 3. Overall macroinvertebrate production did not change significantly because each stream responded differently to wood addition. Production increased by 22% in the main‐channel of one stream, and showed insignificant changes in the other two streams compared to values before wood addition. Changes in main‐channel macroinvertebrate production were related to small changes in substrate composition, which probably affected habitat and periphyton abundance. Macroinvertebrate production was much greater in debris accumulations than in the main‐channel, indicating the potential for increased retention of leaf litter to increase overall macroinvertebrate production, especially in autumn. 4. Surrounding land use, substrate composition, temperature and method of log placement are variables that interact to influence the response of stream biota to wood additions. In most studies, wood additions occur in altered catchments, are rarely monitored, and secondary production is not a common metric. Our results suggest that the time required for measurable changes in geomorphology, organic matter retention, or invertebrate production is likely to take years to achieve, so monitoring should span more than 5 years, and ecosystem metrics, such as macroinvertebrate secondary production, should be incorporated into restoration monitoring programs.  相似文献   

5.
From May 1996 to February 1998, the density of debris dams was surveyed in monthly intervals along a 750-m-long, third order section of the Weidlingbach, a fourth order sandstone brook in the Wienerwald. The mean density over the whole study period was one woody debris accumulation per 35 m stream length. The longevity of these structures ranged from one month to over one year, depending on the hydrology of the stream. More than 50% of the accumulations outlasted moderate floods (0.3–0.4 m3 s−1); of these, 52% were tightly fixed to the bank vegetation. However, only 12% of the destroyed dams were anchored in any way. In addition, two dams were sampled for macroinvertebrate colonisation every other month from June 1996 to June 1997. Dry weights of the leaf and wood fraction were determined and macroinvertebrates identified. Within dams, organismic densities were lowest in temporarily dry levels at the top of debris accumulations (mean density =171 specimens dm−3) and highest in permanently submerged levels near the water surface as well as in patches with high leaf litter concentrations (mean density = 1240 specimens dm−3). Within the topmost 5 cm sediment layer mean macroinvertebrate density was 67.7 specimens dm−3. Within debris dams, taxa composition was not significantly different between the lowermost level 1 and the sediment surface and among levels within dams; however, significant differences existed between the topmost level 4 and all other dam levels. In level 4, we observed significantly more terrestrial Diptera taxa and Coleoptera and significantly fewer Plecoptera and Gammaridae.  相似文献   

6.
Different types of litter patches with contrasting macroinvertebrate assemblages have been observed within a stream reach. This study examined whether distributions of macroinvertebrates among three litter patch types (riffle, middle, edge) were consistent between reaches with different channel characteristics in headwater streams in central Japan. Mass of leaves per unit area was significantly higher in riffle and edge patches than in middle patches, which was consistent between reaches, while no consistent pattern was evident between reaches for mass of either woody material or small litter fragments. Distribution among the patch types was consistent between reaches for 11 out of 13 dominant macroinvertebrate taxa; density was highest in riffle patches for 5 taxa and in middle patches for 5 taxa. Although we previously related densities of some taxa to mass of woody material or small litter fragments, hydraulic characteristics (water depth, current velocity), which were consistent between reaches, may be more important determinants of macroinvertebrate distributions among the patch types, even within pools (i.e. middle and edge patches) where current is uniformly low. The results of this study indicate that a reach-scale macroinvertebrate community structure associated with litter is likely to vary according to litter patch type composition, which would be affected by channel characteristics of the reaches.  相似文献   

7.
Three channel reaches with different habitat characteristics were selected to test the variability in community structure of benthic macroinvertebrates by comparing the relative abundance of functional feeding groups among the reaches. The important factors influencing the spatial and temporal organization of community structure were explored using nonmetric multidimensional scaling (NMS). The habitat characteristics in the reaches were different in terms of habitat type, hydrological factors, and substrate composition. The first headwater reach was classified as a step-pool reach with similar relative areas of riffle and pool habitats. The second mid-reach and the third down reach had greater areas of pool habitat followed by runs and riffles whose proportions were similar between the latter two reaches. The relative abundances of functional feeding groups were different among the surveyed reaches. Gammarid shredders predominated in the upper reach, and chironomid collector–gatherers and collector–filterers were in greater abundance in the two lower reaches. The proportions of gammarids were minor in the mid and downstream reaches. NMS ordination indicated that the proportion of substrates < 8 mm, discharge, and water depth mainly determined the spatial and temporal distribution of samples based on the macroinvertebrate community in the study reaches. These results suggest that different habitat characteristics result in a distinct community structure in each reach.  相似文献   

8.
Aquatic biodiversity faces increasing threats from climate change, escalating exploitation of water and land use intensification. Loss of vegetation in catchments (= watersheds) has been identified as a substantial problem for many river basins, and there is an urgent need to better understand how climate change may interact with changes in catchment vegetation to influence the ecological condition of freshwater ecosystems. We used 20 years of biological monitoring data from Victoria, southeastern Australia, to explore the influences of catchment vegetation and climate on stream macroinvertebrate assemblages. Southeastern Australia experienced a severe drought from 1997 to 2009, with reductions of stream flows >50% in some areas. The prolonged drying substantially altered macroinvertebrate assemblages, with reduced prevalence of many flow‐dependent taxa and increased prevalence of taxa that are tolerant of low‐flow conditions and poor water quality. Stream condition, as assessed by several commonly used macroinvertebrate indices, was consistently better in reaches with extensive native tree cover in upstream catchments. Prolonged drought apparently caused similar absolute declines in macroinvertebrate condition indices regardless of vegetation cover, but streams with intact catchment and riparian vegetation started in better condition and remained so throughout the drought. The largest positive effects of catchment tree cover on both water quality and macroinvertebrate assemblages occurred above a threshold of ca. 60% areal tree cover in upstream catchments and in higher rainfall areas. Riparian tree cover also had positive effects on macroinvertebrate assemblages, especially in warmer catchments. Our results suggest that the benefits of extensive tree cover via improved water quality and in‐channel habitat persist during drought and show the potential for vegetation management to reduce negative impacts of climatic extremes for aquatic ecosystems.  相似文献   

9.
Rosas  Keysa G.  Colón-Gaud  Checo  Ramírez  Alonso 《Hydrobiologia》2020,847(8):1961-1975

The relative importance of allochthonous and autochthonous resources in fueling tropical headwater streams remains an open topic. We combined estimates of secondary production and assessment of its trophic basis to determine which resources were responsible for animal production. We studied benthic insect assemblages in two streams in the Luquillo Experimental Forest, Puerto Rico. Habitat-weighted production estimates were similar in both streams (528.5 and 591.5 mg m−2 year−1), but production was over twice as high in pool versus riffle habitats. The mayfly Neohagenulus (Leptophlebiidae) was a major contributor to total production (259.1 and 352.2 mg m−2 year−1). All taxa relied heavily on amorphous detritus and plant tissue. Aquatic insect production was similar to that reported for shrimp assemblages in the same study area, but low relative to temperate region estimates. The trophic basis of production appears to be allochthonous organic matter, which agrees with the small size and closed canopy cover over the study streams. This is the first study quantifying the production and trophic basis of the non-shrimp macroinvertebrate assemblage in tropical island streams. We also provide support for the importance of riparian vegetation as the main energy sources for stream tropical stream food webs.

  相似文献   

10.
1. We investigated the diversity and distribution of freshwater mussels at 40 sites in an agricultural catchment, the River Raisin in south‐eastern Michigan, to relate mussel assemblages and individual taxa to reach and catchment‐scale variables. Unionids were surveyed by timed searches in 100‐m reaches, and in‐stream and riparian habitat were quantified as well as flow, water chemistry and channel morphology. Land use/cover and surficial geology were determined for site subcatchments and riparian buffers. 2. Some 21 mussel species were found overall; richness ranged from 0 to 12 living species per site. From the upper to middle to lower catchment, the number of individuals, number of species, Shannon–Weaver diversity and relative abundance of intolerant unionids all declined significantly. 3. Four groupings based on overall mussel diversity and abundance were significantly related to reach‐scale habitat variables. The richest mussel assemblages were associated with sites with higher overall habitat quality, greater flow stability, less fine substratum, and lower specific conductance. 4. Stepwise multiple regressions revealed that the distribution and abundance of the total mussel assemblage, as well as the most common species, could be predicted from a combination of reach‐ and catchment‐scale variables (R2 = 0.63 for total mussels, R2 = 0.51–0.86 for individual species). 5. Flow stability, substratum composition and overall reach habitat quality were the most commonly identified reach‐scale variables, and measures of surficial geology were the most effective catchment‐scale variables. The spatial pattern of geology is likely to be responsible for the diversity gradient from the upper to the lower catchment. 6. Prior studies, attempting to explain mussel distributions from local habitat features alone, have found relatively weak relationships. By employing a combination of reach‐ and catchment‐scale habitat variables, this study was able to account for a substantial amount of the spatial variability in mussel distributions.  相似文献   

11.
Invasive species can monopolize resources and thus dominate ecosystem production. In this study we estimated secondary production and diet of four populations of Pomacea canaliculata, a freshwater invasive snail, in wetlands (abandoned paddy, oxbow pond, drainage channel, and river meander) in monsoonal Hong Kong (lat. 22°N). Apple snail secondary production (ash-free dry mass [AFDM]) ranged from 165.9 to 233.3 g m−2 year−1, and varied between seasons. Production was lower during the cool dry northeast monsoon, when water temperatures might have limited growth, but fast growth and recruitment of multiple cohorts were possible throughout much (7–10 months) of the year and especially during the warm, wet southwest monsoon. The diet, as revealed by stomach-content analysis, consisted mainly of detritus and macrophytes, and was broadly consistent among habitats despite considerable variation in the composition and cover of aquatic plants. Apple snail annual production was >10 times greater than production estimates for other benthic macroinvertebrates in Hong Kong (range 0.004–15 g AFDM m−2 year−1, n = 29). Furthermore, annual production estimates for three apple snail populations (i.e. >230 g AFDM m−2 year−1) were greater than published estimates for any other freshwater snails (range 0.002–194 g AFDM m−2 year−1, n = 33), regardless of climatic regime or habitat type. High production by P. canaliculata in Hong Kong was attributable to the topical climate (annual mean ~24°C), permitting rapid growth and repeated reproduction, together with dietary flexibility including an ability to consume a range of macrophytes. If invasive P. canaliculata can monopolize food resources, its high productivity indicates potential for competition with other macroinvertebrate primary consumers. Manipulative experiments will be needed to quantify these impacts on biodiversity and ecosystem function in wetlands, combined with management strategies to prevent further range extension by P. canaliculata.  相似文献   

12.
1. We quantified production and consumption of stream‐dwelling tadpoles and insect grazers in a headwater stream in the Panamanian uplands for 2 years to assess their effects on basal resources and energy fluxes. At the onset of our study, this region had healthy, diverse amphibian populations, but a catastrophic disease‐driven decline began in September 2004, which greatly reduced amphibian populations. 2. Insect grazer production was 348 mg ash‐free dry mass (AFDM) m?2 year?1 during the first year of the study and increased slightly to 402 mg AFDM m?2 year?1 during the second year. 3. Prior to amphibian declines, resource consumption by grazers (tadpoles and insects) was estimated at 2.9 g AFDM m?2 year?1 of algal primary production, which was nearly twice the estimated amount available. Insect grazers alone accounted for c. 81% of total primary consumption. During the initial stages of the declines, consumption remained at c. 2.9 g AFDM m?2 year?1, but only 35% of the available resource was being consumed and insect grazers accounted for c. 94% of total consumption. 4. Production and resource consumption of some insect grazers increased during the second year, as tadpoles declined, indicating a potential for functional redundancy in this system. However, other insect grazer taxa declined or did not respond to tadpole losses, suggesting a potential for facilitation between tadpoles and some insects; differential responses among taxa resulted in the lack of a response by insect grazers as a whole. 5. Our results suggest that before massive population declines, tadpoles exerted strong top‐down control on algal production and interacted in a variety of ways with other primary consumers. 6. As amphibian populations continue to decline around the globe, changes in the structure and function of freshwater habitats should be expected. Although our study was focused on tropical headwater streams, our results suggest that these losses of consumer diversity could influence other aquatic systems as well and may even reach to adjacent terrestrial environments.  相似文献   

13.
The effect of anchor‐ice dams on the physical habitat and behavioural responses of Atlantic salmon Salmo salar parr in a small, steep stream was investigated. Anchor‐ice dams formed periodically, leading to a dynamic winter environment as the study reach alternated between riffle and walk dominated habitat. Parr demonstrated large individual variation in habitat use, utilizing most of the wetted stream width, and were generally unaffected by diel changes in the mesohabitat composition. Furthermore, parr displayed high site fidelity in areas with low embedded substrata, and demonstrated few large movements between the three mesohabitat classes present: shallow riffle, walk and pool. Findings from this study question the importance of hydraulic variables such as water depth, flow velocity and dynamic ice formation as single habitat features for juvenile stream salmonids during winter and emphasize the importance of access to substratum cover.  相似文献   

14.
15.
We studied life history and secondary production of a caddisfly scraper, Glossosoma nigrior, in two Alabama streams. Collier Creek, located within the Appalachian Plateau physiographic province, is underlain by sandstone bedrock, while Hendrick Mill Branch is located in the Valley and Ridge physiographic province with limestone bedrock. G. nigrior populations in both streams exhibited trivoltine life histories, which were attributed to the higher water temperature regimes than those found in more northern streams. Mean larval density (556 m−2) and biomass (B) (49.2 mg AFDM m−2) were much higher in Hendrick Mill Branch than Collier Creek (78 m−2 and 6.7 mg AFDM m−2). G. nigrior in Hendrick Mill Branch maintained continuous larval growth and higher larval density than Collier Creek throughout the year mainly due to a greater availability of optimal habitat, a more stable hydrology, and warmer winter water temperature. These factors also resulted in the much higher annual secondary production (P) in Hendrick Mill Branch (965 mg AFDM m−2; P/B = 18.3) than Collier Creek (115 mg AFDM m−2; P/B = 17.9). Gut content analysis revealed that algae (>50%) and detritus (>40%) were the major diet items for G. nigrior, and the majority of secondary production (>80%) was contributed by the consumption of algae. Glossosoma populations play an important role in trophic linkage in these streams with their high production and grazing activities. Handling editor: D. Dudgeon  相似文献   

16.
1. Surface ecosystems provide the primary source of organic matter to many cave communities. Variation in the strength of connectivity to the surface suggests that some caves may be more resource‐limited than others. To test this, we examined diet, prey availability and production of an obligate cave salamander Gyrinophilus palleucus (Plethodontidae), a top predator, in two south‐eastern U.S.A. caves with different levels of organic matter (Tony Sinks cave, 165 g AFDM m?2; Bluff River cave, 62 g AFDM m?2). 2. We quantified density, biomass, growth rate, production and diet of G. palleucus monthly for 21 months. Diet composition, differences in prey communities and seasonal patterns in prey consumption were also analysed. 3. Salamander density, biomass and secondary production were significantly greater in the high organic matter cave (0.10 m?2, 0.18 g AFDM m?2, 0.12 g AFDM m?2 year?1) than in the low organic matter cave (0.03 m?2, 0.03 g AFDM m?2, 0.01 g AFDM m?2 year?1). Although growth rates were not statistically different between the two cave salamander populations, low recaptures probably influenced this result. 4. Isopoda prey were the major contributor to salamander production in the high organic matter cave (69%). In the low organic matter cave, production was provided by isopods (41%) and oligochaetes (20%). The lower number of prey taxa contributing to salamander production in the high organic matter cave suggests the ability to forage more selectively. 5. The differences in foraging strategy, density, biomass and secondary production were probably related to differences in the strength of surface connectivity, which controls organic matter supply. Links between basal resource level and top predator performance show the importance of bottom‐up limitation in the food webs of caves and other detritus‐based ecosystems.  相似文献   

17.
Luz Boyero  Jaime Bosch 《Biotropica》2002,34(4):567-574
The detection of spatial variation in macroinvertebrate drift depends on the spatial scale of investigation in streams of the La Selva Biological Station, Costa Rica. Drift samples were taken in a spatially nested design, with two streams, two reaches per stream, two riffles per reach, and four replicate samples per riffle. Drift showed little variation among streams, but varied significantly at the scales of reach and riffle, with variation among samples also high. In addition, sampling took place at two temporal scales: diel and at two different periods that differed in rainfall conditions. Drift diel periodicity was a clear pattern, while only density of individuals varied among sampling periods. This is the first study of macroinvertebrate drift at multiple spatial scales, despite the recognition that multi‐scale studies are essential for a more complete understanding of community patterns and processes.  相似文献   

18.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

20.
1. Macroinvertebrate production and macrophyte growth were studied in logged and unlogged sections of a sand‐bottomed, low‐gradient, blackwater stream on the Coastal Plain of Virginia, U.S.A. A section of the catchment had been clear‐cut 3 years prior to sampling. No logging occurred in the upstream area of the catchment, which had experienced almost no land disturbance by humans for over 100 years. 2. A primary difference among the logged and unlogged sections of the stream was in the abundance of macrophytes. The combined biomass of Sparganium americanum and of Chara sp. was over 300‐times greater in the logged than the unlogged section. 3. Annual macroinvertebrate production in the sediment was higher in the unlogged section (41 g dry mass m–2) than in the logged section (25 g m–2). 4. Annual macroinvertebrate production on Sparganium was higher in the logged section (10 g m–2 of plant surface area) than in the unlogged section (6 g m–2). Annual production associated with Chara, which occurred only in the logged section, was 196 g m–2 of stream bottom covered by this plant. 5. Whole‐stream annual macroinvertebrate production, calculated by summing habitat‐specific production that was weighted by habitat availability, was greater in the logged section (103 g m–2) than in the unlogged section (41 g m–2). Sediments supported 99% of the annual production in the unlogged section, whereas macrophytes supported 76% in the logged section. 6. Much of the additional macroinvertebrate production in the logged section was by collector‐filterers living on macrophytes. Production by collector‐gatherers was also greater in the logged section, whereas production by other functional feeding groups changed little with logging. 7. Although logging along high‐gradient, rocky streams also results in increased macroinvertebrate production, that increase often is stimulated by greater periphyton growth rather than the macrophyte growth observed in this low‐gradient stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号