首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rat aldolase C gene encodes a glycolytic enzyme strongly expressed in adult brain. We previously reported that a combination of distal and proximal 5' flanking sequences, the A + C + 0.8 kilobase (kb) pairs fragments, ensured high brain-specific expression in vivo (Skala et al. 1998). We show here that the expression pattern conferred by these sequences, when placed in front of the chloramphenicol acetyltransferase (CAT) or the enhanced green fluorescent protein (EGFP) reporter genes in transgenic mice, is similar to the distribution of the endogenous mRNA and protein. Double immunostaining for neuronal or glial cell-specific markers and for the EGFP protein indicates that the A + C + 0.8 kb genomic sequences from the rat aldolase C gene direct a predominant expression in neuronal cells of adult brain.  相似文献   

2.
We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source, aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism. We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that i  相似文献   

3.
Aldolase C is selectively expressed in the hippocampus and Purkinje cells in adult mammalian brain. The gene promoter regions governing cell-specific aldolase C expression are obscure. We show that aldolase C messenger expression in the hippocampus is restricted to CA3 neurons. The human distal promoter region (-200/-1200 bp) is essential for beta-galactosidase (beta-gal) expression in CA3 neurons and drives high stripe-like beta-gal expression in Purkinje cells. The 200 bp proximal promoter region is sufficient to drive low brain-specific and stripe-like beta-gal expression in Purkinje cells. Thus, the human aldolase C gene sequences studied drive endogenous-like expression in the brain.  相似文献   

4.
Microtubule-associated proteins (MAPs) regulate microtubule stability and play critical roles in neuronal development and the balance between neuronal plasticity and rigidity. MAP1a (HGMW-approved symbol MAP1A) stabilizes microtubules in postnatal axons. We describe human MAP1a's genomic organization and deduced cDNA and amino acid sequences. MAP1a is a single-copy gene spanning 10.5 kb. MAP1a coding sequence is contained in five exons. Translation begins in exon 3. Human MAP1a contains 2805 amino acids (predicted molecular weight 306.5 kDa) and is slightly larger than rat MAP1a (2774 amino acids). Like rat and bovine MAP1a, human MAP1a contains conserved tubulin binding motifs in the amino-terminal region. The carboxy-terminal portion contains a conserved pentadecapeptide that is present in the light chain portion of rat and bovine MAP1a/LC2 polyprotein. We show that human MAP1a gene expression occurs almost exclusively in the brain and that there is approximately 10-fold greater gene expression in adult brain compared to fetal brain. Strong, interspecies conservation between human and rat MAP1a cDNA and amino acid sequences indicates important relationships between MAP1a's function and its primary amino acid sequence.  相似文献   

5.
6.
7.
Guanine nucleotide-binding proteins (G proteins) mediate signals between activated cell-surface receptors and cellular effectors. A bovine G-protein alpha-subunit cDNA has been used to isolate similar sequences from Drosophila genomic and cDNA libraries. One class, which we call DG alpha 0, hybridized to position 47A on the second chromosome of Drosophila. The nucleotide sequence of the protein coding region of one cDNA has been determined, revealing an alpha subunit that is 81% identical with rat alpha 0. The cDNA hybridizes strongly to a 3.8 kb mRNA and weakly with a 5.3 kb message. Antibodies raised against a trp-E-DG alpha 0 fusion protein recognized a 39,000 Da protein in Drosophila extracts. In situ hybridization to adult Drosophila sections combined with immunohistochemical studies revealed expression throughout the optic lobes and central brain and in the thoracic and abdominal ganglia. DG alpha 0 message and protein were also detected in the antennae, oocytes, and ovarian nurse cells. The neuronal expression of this gene is similar to mammalian alpha 0, which is most abundantly expressed in the brain.  相似文献   

8.
The angiotensin II (Ang II) type 2 receptor (AT2R) is localized at specific nuclei within adult rat brain. However, a lack of specific approaches for manipulating the activity of neuronal AT2R has meant that the physiological actions of these sites in the brain remain to be established. Therefore, in this study, our aim was to develop a method by which AT2R can be specifically overexpressed in neurons and in rat brain, with the ultimate goal of a producing a system where discrete increases in AT2R levels in brain nuclei could reveal (and be linked to) physiological actions. Here, we have constructed an AT2R recombinant adenoviral vector, Ad5-SYN-AT2R-IRES-EGFP, which contains the AT2R gene and an IRES-linked EGFP reporter gene, both driven by the neuron-specific synapsin I (SYN) gene promoter. This vector efficiently transduces the AT2R into neuronal cells in culture and results in the expression of high levels of AT2R. These expressed receptors are functional in terms of inhibition of Erk mitogen activated protein kinases (Erk MAPK) and stimulation of neuronal K+ current. Furthermore, microinjection of this vector into adult rat brain elicits a long lasting ( approximately 1 month) expression of AT2R within neurons. In summary, we have developed a viral vector that can be used for the efficient transduction of AT2R into neurons both in vitro and in vivo, the use of which may help to define the physiological functions of brain AT2R in adult rats.  相似文献   

9.
10.
Rat acetyl-CoA transporter gene (Acatn) encodes a hydrophobic multi-transmembrane protein involved in the O-acetylation of gangliosides. O-acetylated gangliosides have been found to play important roles in the embryonic development of the nervous system. We have isolated rat Acatn cDNA by PCR cloning. The amino acid sequence of rat Acatn exhibited 92% and 96% homology with human and mouse sequences, respectively. The mRNA was expressed in brain at all developmental stages. Acatn expression was higher in embryonic and postnatal rats than in adult rats. Cellular localization of Acatn mRNA in adult rat brain was also analyzed by in situ hybridization. Acatn mRNA expression was detected in the neuronal cells of cerebellum, hippocampus, hypothalamus, cortex, olfactory bulb, and dorsal and ventral anterior olfactory nucleus in adult rat brain.  相似文献   

11.
12.
13.
Localization of aldolase C mRNA in brain cells   总被引:4,自引:0,他引:4  
The expression of aldolase C and aldolase A mRNA was assessed by Northern blot hybridization using RNAs purified from cultured rat and mouse brain neurons and astroglial cells. Neurons were found to contain about 4-fold more aldolase C mRNA and about twice as much aldolase A mRNA than astroglia. Analysis of the cellular localization of aldolase C mRNA by in situ hybridization to brain slices showed a predominantly neuronal labeling with an irregular distribution. A strong signal was observed in Purkinje cell somata and a weaker signal in subpopulations of neurons in cerebral cortex, striatum, hippocampus, hypothalamic nuclei and primary olfactory cortex.  相似文献   

14.
Chicken aldolase B (liver-type) and C (brain-type) cDNAs were isolated and their nucleotide sequences determined. Southern blot analysis of chicken genomic DNA using the fragments of aldolase C cDNA suggested that the aldolase C gene is a single-copy gene. The quantification by Northern blot analysis of aldolase B and C mRNAs in the chicken liver and brain during development showed that in the liver, the B gene was progressively activated, while C gene expression was extinguished reciprocally. In the brain, the B gene was silent throughout the development, while the C gene was activated progressively, reaching a product level of more than 20-fold that of the 7-day-old embryo.  相似文献   

15.
16.
17.
Three different calmodulin genes that encode the identical protein have been identified in the rat (Nojima, 1989); however, calmodulin gene expression at the various stages of tissue differentiation and maturation has not been previously determined. We have quantitated the content of mRNAs encoding calmodulin in the developing brain and skeletal muscle using RNA blot analysis with three specific cDNA probes. Our results show that five species of calmodulin mRNAs: 4.0 and 1.7 kb for CaM I, 1.4 kb for CaM II, and 2.3 and 0.8 kb for CaM III are detectable at all ages in the brain as well as in skeletal muscle but exhibit a tissue-specific developmental pattern of expression. The comparison of the temporal pattern of calmodulin gene expression with both mitotic activity, as demonstrated by cyclin A mRNA levels, and differentiation and maturation of specific brain or muscle regions is consistent with calmodulin involvement in development.  相似文献   

18.
Summary Southern blot analysis of human genomic DNA hybridized with a coding region aldolase A cDNA probe (600 bases) revealed four restriction fragments with EcoRI restriction enzyme: 7.8 kb, 13 kb, 17 kb and >30 kb. By human-hamster hybrid analysis (Southern technique) the principal fragments, 7.8 kb, 13 kb, >30 kb, were localized to chromosomes 10, 16 and 3 respectively. The 17-kb fragment was very weak in intensity; it co-segregated with the >30-kb fragment and is probably localized on chromosome 3 with the >30-kb fragment. Analysis of a second aldolase A labelled probe protected against S1 nuclease digestion by RNAs from different hybrid cells, indicated the presence of aldolase A mRNAs in hybrid cells containing only chromosome 16. Under the stringency conditions used, the EcoRI sequences detected by the coding region aldolase A cDNA probe did not correspond to aldolase B or C. The 7.8-kb and >30-kb EcoRI sequences, localized respectively on chromosomes 10 and 3, correspond to aldolase A pseudogenes, the 13-kb EcoRI sequence localized on chromosome 16 corresponds to the aldolase active gene. The fact that the aldolase A gene and pseudogenes are located on three different chromosomes supports the hypothesis that the pseudogenes originated from aldolase A mRNAs, copied into DNA and integrated in unrelated chromosomal loci.  相似文献   

19.
Weber T  Schönig K  Tews B  Bartsch D 《PloS one》2011,6(11):e28283
The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.  相似文献   

20.
Following previous cloning and expression studies of Xenopus aldolase C (brain-type) and A (muscle-type) cDNAs, we cloned here two Xenopus aldolase B (liver-type) cDNAs (XALDB1 and XALDB2, 2447 and 1490 bp, respectively) using two different liver libraries. These cDNAs had very similar ORF with only one conservative amino acid substitution, but 3'-UTR of XALDB1 contained ca. 1 kb of unrelated reiterated sequence probably ligated during library construction as shown by genomic Southern blot analysis. In adult, aldolase B mRNA (ca. 1.8 kb) was expressed strongly in kidney, liver, stomach, intestine, moderately strongly in skin, and very weakly in all the other tissues including muscles and brain, which strongly express aldolase A and C mRNAs, respectively. In oocytes and early embryos, aldolase A and C mRNAs occurred abundantly as maternal mRNAs, but aldolase B mRNA occurred only at a residual level, and its strong expression started only after the late neurula stage, mainly in liver rudiment, pronephros, epidermis and proctodeum. Thus, active expression of the gene for aldolase B, involved in dietary fructose metabolism, starts only later during development (but before the feeding stage), albeit genes for aldolases A and C, involved in glycolysis, are expressed abundantly from early stages of embryogenesis, during which embryos develop depending on yolk as the only energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号