首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surficial sediment (0–10 cm) of shallow eutrophic Lake Võrtsjärv (Estonia) was characterized by an acid insoluble residue of 50% dry weight and low nutrient, Fe and Mn content. Among phosphorus (P) fractions (Hieltjes and Lijklema , 1980), NaOH-NRP amounted on an average to 50%, HCl-RP to 30%, NaOH-RP to 16%, and NH4Cl-RP to 4% of their sum. Seasonal changes in sediment P content were inconsistent with mass balance calculations and could be attributed to sediment redistribution caused by decreasing water level. High Fe/P ratio (26–30) and the aeration of surficial sediment by frequent resuspension kept phosphate adsorbed. Low pore-water SRP (commonly <10 μg l−1) usually prevented phosphate release from surficial sediment. However, a storm in September 1996 (max. wind speed 16 m s−1) which coincided with the extremely low water level in the lake (mean depth 1.44 m), denuded deeper anoxic sediment layers and caused a SRP release of 193 mg P m−2 d−1.  相似文献   

2.
Microaerobic activated sludge (MAS) is a one-stage process operated at 0.5–1.0 mg l−1 dissolved oxygen (DO) aiming at simultaneous nitrification and denitrification. We used molecular techniques and a comprehensive nitrogen (N)-transformation activity test to investigate the dominant NH3-oxidizing and N2-producing mechanism as well as the dominant ammonia-oxidizing bacteria (AOB) species in sludge samples individually collected from an MAS system and a conventional anoxic/oxic (A/O) system; both systems were operated at a normal loading rate (i.e. 1.0 kg chemical oxygen demand (COD) m−3 day−1 and 0.1 kg NH4+-N m−3 day−1) in our previous studies. The DO levels in both systems (aerobic: conventional A/O system; microaerobic: MAS system) did not affect the dominant NH3-oxidizing mechanism or the dominant AOB species. This study further demonstrated the feasibility of a higher loading rate (i.e. 2.30 kg COD m−3 day−1 and 0.34 kg NH4+-N m−3 day−1) with the MAS process during sewage treatment, which achieved a 40% reduction in aeration energy consumption than that obtained in the conventional A/O system. The increase in loading rates in the MAS system did not affect the dominant NH3-oxidizing mechanism but did impact the dominant AOB species. Besides, N2 was predominantly produced by microaerobic denitrification in the MAS system at the two loading rates.  相似文献   

3.
Liu  Huaqing  Hu  Zhen  Zhang  Yijin  Zhang  Jian  Xie  Huijun  Liang  Shuang 《Applied microbiology and biotechnology》2018,102(21):9389-9398

Constructed wetland (CW) is popular in wastewater treatment for its prominent advantage of low construction and operation cost. However, the nitrogen removal in conventional CW is usually limited by the low dissolved oxygen (DO) and insufficient electron donor. This paper investigated the nitrogen removal performance and mechanisms in the poly (butylenes succinate)-based CW (PBS-CW) while treating ammonia wastewater under different DO levels. The average DO contents in limited-aeration and full-aeration phases were 1.68 mg L−1 and 5.71 mg L−1, respectively. Results indicated that, with the ammonia nitrogen loading rate of 25 g N m−3 day−1, total nitrogen removal ratios in the PBS-CW under the limited-aeration and full-aeration phases were 72% and 99%, respectively. Combined analyses revealed that simultaneous nitrification and denitrification (SND) via nitrite/nitrate were the main microbial nitrogen removal pathways in the aeration phase of the PBS-CW (> 89%). The microbial carrier of biodegradable material was believed to play a significant role in prompting SND performance while dealing with low C/N wastewater. Due to the coexistence of micro-anaerobic zone and carbon supply inside the coated biofilm, the high DO level in the PBS-CW increased the abundance of the nitrifying bacteria (amoA and nxrA), denitrifying bacteria (narG, nirK, nirS, and nosZ), and even anammox bacteria (anammox 16s rRNA). These features are beneficial to many microbial processes which require the simultaneous aerobic, anoxic, and anaerobic environment.

  相似文献   

4.
Benthic nutrient fluxes in a eutrophic,polymictic lake   总被引:2,自引:0,他引:2  
Sediment release rates of soluble reactive phosphorus (SRP) and ammonium (NH4) were determined seasonally at three sites (water depth 7, 14 and 20 m) in Lake Rotorua using in situ benthic chamber incubations. Rates of release of SRP ranged from 2.2 to 85.6 mg P m−2 d−1 and were largely independent of dissolved oxygen (DO) concentration. Two phases of NH4 release were observed in the chamber incubations; high initial rates of up to 2,200 mg N m−2 d−1 in the first 12 h of deployment followed by lower rates of up to 270 mg N m−2 d−1 in the remaining 36 h of deployment. Releases of SRP and NH4 were highest in summer and at the deepest of the three sites. High organic matter supply rates to the sediments may be important for sustaining high rates of sediment nutrient release. A nutrient budget of Lake Rotorua indicates that internal nutrient sources derived from benthic fluxes are more important than external nutrient sources to the lake.  相似文献   

5.
Surface sediments and sediment cores were collected from coastal lagoons and lakes located in the Southern Mediterranean Region (SMR) as part of the MELMARINA Project which involved integrated eco-hydrological monitoring and modelling. This study uses surface sediments and sediment cores to infer spatial characteristics and temporal changes at the MELMARINA primary sites, Merja Zerga in Morocco, Ghar El Melh in Tunisia and Lake Manzala in Egypt. In addition, surface sediment sampling was undertaken at Egyptian Lake Bardawil and sediment cores were collected from the Lagune de Nador (Morocco). Sediment distribution patterns are investigated using GIS with georeferenced sample locations to facilitate display and resurvey. Major variations in sedimentary organic matter and, particularly, carbonate content, occur within and between sites. Local landscapes combined with hydrological and biogeochemical processes influence the distributions of sediment bulk components (carbonates, organic material and clastic matter) and molluscan shells and shell debris are an important source of sedimentary carbonate at all three primary sites. Sediment cores were dated using natural (210Pb) and artificial (137Cs) radionuclides, and sediment accumulation rate changes indicate that sources of sediment supply varied markedly through the twentieth century but have generally diminished after the mid-1960s. Sedimentary siliceous microfossils (diatoms) were generally poorly preserved, but mollusc shell remains were well represented. Sediment chronologies and sediment bulk composition allow discussion of some recent changes in bulk, minerogenic and biogenic sediment accumulation patterns in the SMR lagoons. Sediment accumulation rates also varied between sites and multiple cores from Lake Manzala indicated that rates showed considerable spatial variability. Low-level sediment contamination by fossil fuel combustion particulates and trace metals was demonstrated for Ghar El Melh and Lagune de Nador where Pb and Zn accumulation rates were highest in twentieth century sediment. It is emphasized that sediment quality and quantity have strong influences on lagoon ecosystem function and sedimentation is relevant to hydromorphology and to concepts of ecological quality. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: J. R. Thompson & R. J. Flower Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons  相似文献   

6.
Reverse process of the coprecipitation of dissolved organic matter with Fe(III) precipitates in a lake is reported. Water containing a slight amount of dissolved oxygen from the hypolimnion of Lake Onogawa was sealed in glass bottles, and some changes in the constituents with time were followed. The water sample contained 0.1 mg l−1 dissolved oxygen at the beginning of the experiment, which decreased to 0.0 mg l−1 within 24 h. In response to the depletion of dissolved oxygen, there were increases in dissolved Fe from 8.4 to 11.4 mg l−1 and dissolved organic carbon (DOC) from 5.1 to 6.9 mg l−1 after 72 h. At the beginning of the experiment, more than 2 mg l−1 of insoluble Fe, which was thought to be Fe(III) precipitates, existed in the water samples. When the water samples became anoxic, the preexisted Fe(III) must have been reduced to soluble Fe(II) over time, resulting in the increase of dissolved Fe. Simultaneous with Fe(III) reduction, coprecipitated DOC with Fe(III) must have been released. The reverse process of the coprecipitation of dissolved organic matter with Fe(III) precipitates found in the present study strongly supports in situ coprecipitation of dissolved organic matter with Fe(III) precipitates. Contribution No. 27 from the Urabandai Limnological Station, Yamagata University.  相似文献   

7.
A formaldehyde-degrading fungus was isolated from deep sea sediment of East Pacific by enrichment culture technique and was identified as Penicillium chrysogenum DY-F2 based on microscopic spore morphology and 18S rRNA gene sequence analysis. The fungus showed high formaldehyde resistance and was able to grow in the presence of formaldehyde up to 3000 mg l−1. The optimal temperature and pH for the growth of fungus in the presence of 1000 mg l−1 of formaldehyde was 25 °C and 6.0, respectively. The fungus was able to degrade formaldehyde as the sole source of carbon and energy with the formation of formic acid as the intermediate. Degradation of formaldehyde by the fungus conformed to a first-order kinetic model. This study showed that the deep sea sediment fungi are the potential microbial resources for bioremediation of formaldehyde pollution in marine environment.  相似文献   

8.
Radix swinhoei (H. Adams) is a freshwater snail commonly found in shallow regions of Lake Taihu. This research estimated, based on experiments, the consumption rates of R. swinhoei on three young submerged plants (Vallisneria spiralis, Hydrilla verticillata and Potamogeton malaianus) and its rates of nutrient release. Results showed that the snails consumed V. spiralis at the highest rate (23.34 mg g−1 d−1), P. malaianus at a lower rate (11.97 mg g−1 d−1), and H. verticillata at the lowest rate (7.04 mg g−1 d−1). The consumption rates on V. spiralis varied significantly, with snail size, ranging from 13.63 mg g−1 d−1 for large-size snails to 143.42 mg g−1 d−1 for small-size ones.The average nutrient release rates of snails grazing on different macrophytes were 45.93 μg PO4-P and 0.58 mg NH4-N g−1 d−1. The food species had a significant effect on NH4-N release rates but not on PO4-P. However, the snail size had a significant effect on PO4-P release rates and not on NH4-N. The present study indicates that through selective grazing and nutrient release, snails may impose a significant impact on the macrophyte community, which should be considered in managing the macrophytes of a lake.  相似文献   

9.
This study investigated the anaerobic degradation of tetrachlorobisphenol-A (TCBPA) in sediment samples collected at three sites along the Erren River in southern Taiwan. TCBPA anaerobic degradation half-lives (t1/2) in the sediment were 12.6, 16.9 and 21.7 d at concentrations of 50, 100, and 250 ??g g−1, respectively. TCBPA (50 ??g g−1) anaerobic degradation half-lives (t1/2) in the sediment were 10.1, 11.8, 11.0, 11.6, 10.8, 9.1, 8.5, 18.2, 19.3, and 16.1 d by the addition of yeast extract (5 mg l−1), cellulose (0.96 mg l−1), sodium chloride (1%), brij 30 (130 mg l−1), brij 35 (43 mg l−1), rhamnolipid (55 ??M), surfactin (91 ??M), phthalic esters (2 mg l−1), nonylphenol (2 mg l−1), and heavy metals (2 mg l−1), respectively. The degradation rate of TCBPA was enhanced by the addition of yeast extract, cellulose, sodium chloride, brij 30, brij 35, rhamnolipid, or surfactin. However, it was inhibited by the addition of phthalic esters, nonylphenol, or heavy metals. Also noted was the presence of dichlorobisphenol-A and bisphenol-A, two intermediate products resulting from the anaerobic degradation of TCBPA accumulated in the sediments.  相似文献   

10.
Phosphorus (P) dynamics in the agriculturally-dominated Minnesota River (USA) were examined in the lower 40 mile reach in relation to hydrology, loading sources, suspended sediment, and chlorophyll to identify potential biotic and abiotic controls over concentrations of soluble P and the recycling potential of particulate P during transport to the Upper Mississippi River. Within this reach, wastewater treatment plant (WWTP) contributions as soluble reactive P (SRP) were greatest during very low discharge and declined with increasing discharge and nonpoint source P loading. Concentrations of SRP declined during low discharge in conjunction with increases in chlorophyll, suggesting biotic transformation to particulate P via phytoplankton uptake. During higher discharge periods, SRP was constant at ~0.115 mg l−1 and coincided with an independently measured equilibrium P concentration (EPC) for suspended sediment in the river, suggesting abiotic control over SRP via phosphate buffering. Particulate P (PP) accounted for 66% of the annual total P load. Redox-sensitive PP, estimated using extraction procedures, represented 43% of the PP. Recycling potential of this load via diffusive sediment P flux under anoxic conditions was conservatively estimated as ~17 mg m−2 d−1 using published regression equations. The reactive nature and high P recycling potential of suspended sediment loads in the Minnesota River has important consequences for eutrophication of the Upper Mississippi River.  相似文献   

11.
Previous studies suggest that current-driven plant transport in shallow lagoons and estuaries is associated with increased turbidity. Our hypothesis is therefore that macroalgae erode surface sediment while drifting as bedload. This ballistic effect of moving plants on surface sediment was tested in a series of controlled annular flume experiments, where simultaneous measurements of macrophytes transport and turbidity were conducted at increasing current velocities. Sediment erosion always started earlier in experiments with plants than in control experiments without plants. Turbidity increased immediately when plants started to move at current velocities of 2–4 cm s−1. From a background concentration of 7–10 mg SPM l−1, turbidity increased to 30–50 mg SPM l−1 for Ceramium sp., Ulva lactuca and Chaetomorpha linum, while the more rigid Gracilaria sp., caused much higher turbidities (50–180 mg SPM l−1). Such plant induced sediment erosion at low current velocity can explain the observed appearance of turbid waters in estuaries and lagoons in the absence of strong wind and wave action. Based on 3-D hydrodynamic modelling, it was determined that plant driven erosion occurs during most of the growth season in a shallow eutrophic estuary (Odense Fjord, Denmark).  相似文献   

12.
Sediment and water column phosphorus fractions were recorded monthly for one year (April 2004–April 2005) in a shallow lake recovering from nutrient pollution (Loch Leven, Scotland). Equilibrium phosphate concentration (EPC0) and gross sediment phosphorus (P) release rates were estimated from laboratory experiments. Pore water and organic P pools were lowest during warm water periods whereas bottom water P was lowest during cold water periods. Reductant-soluble, organic, metal oxide-adsorbed, residual and sediment total phosphorus pools all varied significantly with overlying water depth. Short-term, high magnitude, redox initiated P release events occurred in late summer and winter as a result of anoxic sediment conditions. Lower magnitude long-term release conditions were maintained for most of the year, most likely as a result of organic P cycling and maintenance of high concentration gradients between the pore and bottom water P pools. Estimates of summer P uptake/release rates, across an intact sediment-water interface, suggested that maximum gross internal release was ~12 mg SRP m−2 lake surface area d−1 with EPC0 values ranging between 180 and 270 μg P L−1. This study highlights the biological mediation of internal loading in shallow eutrophic lakes, and in particular, the role of sediment algae in decreasing, and sediment bacteria in enhancing, sediment P release.  相似文献   

13.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

14.
Denitrification rates and nitrous oxide (N2O) effluxes were measured at different temperatures and for different oxygen concentrations in the sediments of a eutrophied river entering the Bothnian Bay. The experiments were made in a laboratory microcosm with intact sediment samples. 15N-labelling was used to measure denitrification rates (Dw). The rates were measured at four temperatures (5, 10, 15 and 20°C) and with three oxygen inputs (<0.2, 5, and 10 mg O2 l−1). The temperature response was highly affected by oxygen concentration. At higher O2 concentrations (5 and 10 mg O2 l−1) a saturation over 10°C was observed, whereas the anoxic treatment (<0.2 mg O2 l−1) showed an exponential increase in the temperature interval with a Q 10 value of 3.1. The result is described with a combined statistical model. In contrast with overall denitrification, the N2O effluxes from sediments decreased with increasing temperature. The N2O effluxes had a lower response to oxygen than denitrification rates. The N2O/N2 ratio was always below 0.02. Increased temperatures in the future could enhance denitrification rates in boreal river sediments but would not increase the amount of N2O produced.  相似文献   

15.
This work presents the biodegradation of petroleum hydrocarbons in an upflow anoxic fixed-bed bioreactor (UAnFB) and a sequencing anoxic batch reactor (SAnBR). The performances of the UAnFB and the SAnBR in the removal of petroleum hydrocarbons (TPH) were investigated as a function of inlet concentration at a hydraulic retention time of 24 h. The UAnFB had higher robustness and adapted better towards the transition in TPH concentration. The average TPH removal rates for concentrations of 950, 1450, and 2500 mg L−1 were 99.9%, 99.6%, and 93.7%, respectively, for the UAnFB and 99.7%, 98.5%, and 87.7%, respectively, for the SAnBR. The highest rates of TPH biodegradation at a loading rate of 104 g m−3 h−1 in the UAnFB and the SAnBR were 97.5 and 91.3 g m−3 h−1, respectively. The UAnFB was more efficient than the SAnBR in biodegrading aromatic hydrocarbons. Accordingly, the UAnFB is an efficient and viable technology for the treatment of hydrocarbon-laden streams.  相似文献   

16.

Soil salinization is a global issue impeding horticulture production and is approaching an alarming status due to climate change and urbanization. Breeding salt-tolerant rootstock varieties is an ideal strategy to mitigate stress due to salinity in mango and other perennial fruit species. Stress combating strategies employed by seedlings of 7 mango were studied under saline conditions (200 mM NaCl, EC: > 4.0 dSm−1, pH 8.5) in pot experiments. Significantly high accumulation of proline (19.07 µg g−1 FW in Bappakai), glycine betaine (55.11 µg g−1 FW in 13–1), and total sugars (17.33 mg g−1 FW in Kurukkan) were found to be the common mechanism employed by the tolerant cultivars to counter the osmotic stress, under suboptimal conditions. Non-enzymatic antioxidants viz., tannins (17.18 mg g−1), phenols (18.68 mg g−1), and anthocyanins (1.59 mg g−1) were increased in seedling of "13–1", the salt-resistant cultivar from Israel. Reactive oxygen species (ROS) regulation by increased activity of superoxide dismutase and catalase in the two polyembryonic cultivars of Indian origin (Kurukkan and Nekkare) suggests their potential use as rootstocks to combat oxidative stress. The tolerance index of various cultivars was calculated by averaging the scores of morphological stress indicators, and its correlation with studied parameters suggests that salinity resilience is more tightly linked to enhanced catalase accumulation (r2 = 0.8361) that is reduced ionic stress. This evidence assign the role of osmotic stress alleviation and redox regulation in salt tolerance mechanism operational in native Indian cultivars, Nekkare and Kurukkan at par with known salt tolerant rootstocks.

  相似文献   

17.

High efficient and repeatable in vitro regeneration protocol was established from embryo axis, half-seed, axillary meristem, and cotyledonary node explants of chickpea. Various concentrations and combinations of various plant growth regulators (PGRs) were employed to induce multiple shoots, shoot elongation and rooting of shoots to obtain complete plantlets of chickpea. The pretreatment of seeds with 6-benzyl aminopurine (BAP) at 1.0 mg l?1 was found to significantly increase the multiple shoot regeneration from the all explants tested. Among three PGRs such as BAP, kinetin (KIN) and thidiazuron (TDZ) tested for multiple shoot induction; BAP at 2.0 mg l?1 produced the maximum number of shoots in all tested explants. The maximum number of shoots (48.80 shoots/explant) was attained from the embryo axis explant followed by half-seed (32.76 shoots/explant), axillary meristem (28.34 shoots/explant) and cotyledonary node explant (18.47 shoots/explant) on medium augmented with 2.0 mg l?1 BAP along with 0.05 mg l?1 Indole-3-butyric acid (IBA). The optimum percentage of shoot elongation response was recorded (96.68%) on medium fortified with IAA (0.05 mg l?1), GA3 (1.0 mg l?1) and BAP (1.0 mg l?1) with an average shoot length of 8.82 cm. The elongated shoots were successfully rooted in medium augmented with 2.0 mg l?1 IBA. The complete plants were acclimatized in the greenhouse with a survival rate of 72%. The plantlets regenerated from four explants appeared to be morphologically similar to mother plants. The genetic fidelity of in vitro regenerated plants was evaluated using Start Codon Targeted and Inter simple sequence repeats molecular markers. The in vitro regenerated plants from all four explants were found to be the true to type with their mother plant. The in vitro protocol presented in the study should offer as a feasible system for chickpea genetic transformation.

  相似文献   

18.

Nickel (Ni), an essential micronutrient and a prime component of the plant enzyme urease, has an indispensable role in plants. Triacontanol (TRIA) is a conspicuous plant growth regulator in agriculture, which proved advantageous in enhancing the overall production of plants. Therefore, an experiment was laid down to understand the effects of Ni toxicity on the menthol mint (Mentha arvensis L.) and its mitigation by exogenously applied TRIA. The different treatments applied to the plants were 0 (control), TRIA (10−6 M), Ni (60 mg kg−1), Ni (80 mg kg−1), TRIA (10−6 M) + Ni (60 mg kg−1), and TRIA (10−6 M) + Ni (80 mg kg−1). This work was evaluated on the basis of various growth, biochemical, physiological, yield and quality parameters. Nickel applied at 80 mg kg−1 of soil exhibited maximum inhibition in the parameters studied. Application of TRIA improved all the growth parameters such as plant height, fresh and dry weights as well as herbage yield under non stress and stressed conditions. The levels of carbonic anhydrase (CA) activity, photosynthetic parameters (chlorophyll and carotenoids), and chlorophyll fluorescence of the plants were also stimulated by TRIA under Ni stress. Exogenous TRIA also displayed positive effects on the cellular antioxidant defense mechanism of Ni-affected plants as it increased the levels of proline (PRO), electrolytic leakage (EL), and activities of antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), therefore, restrained the triggering of the oxidative burst (reactive oxygen species) in the plant cells. Moreover, TRIA improved the overall production (in terms of yield and content) of EO in the plants and maintained the leaf ultrastructure and root morphology under Ni treatment. GC–MS analysis revealed that TRIA upregulated the level of menthone and menthyl acetate over their respective controls and under Ni-stressed condition.

  相似文献   

19.
Cremona  Fabien  Blank  Kätlin  Haberman  Juta 《Hydrobiologia》2021,848(18):4401-4418

We assessed long-term impacts of multiple stressors and their interaction on the zooplankton community of the large, eutrophic, cyanobacteria-dominated Lake Peipsi (Estonia, Russia). Stressor dataset consisted in time series (1997–2018) of temperature, nutrients, pH, water transparency, phytoplankton biomass and taxonomic richness. The best predictors were selected with random forests machine-learning algorithms and the subsequent models were constructed with generalized linear modeling. We also aimed to identify graphical thresholds representing non-linear, marked responses of abundance or biomass to stressors. Temperature was the dominant stressor for explaining zooplankton abundance and biomass, followed by cyanobacteria biomass, total nitrogen concentration and water transparency. The effect of water temperature was positive, whereas the effect of cyanobacteria became negative after their biomass exceeded a threshold of?~?2 mg l?1. However, the two stressors together had antagonistic effects on zooplankton, causing a decrease in biomass and abundance. For zooplankton, critical thresholds of total nitrogen (~?700 μg l?1), total phosphorus (~?70 μg l?1), and water transparency (~?1.4 m) after which zooplankton metrics changed drastically, were determined. These findings show that although lake warming alone could be positive for zooplankton, the necessity of reducing interacting stressors that influence harmful cyanobacteria growth and biomass, especially nitrogen loads, must be considered.

  相似文献   

20.
Lindmark  Gunilla K. 《Hydrobiologia》1982,91(1):537-547
Until now, additions of lime have been used to restore the buffering capacity of acidified lakes, but an alternative method which is more effective in the treatment of lakes with organogenic sediments has recently been applied in a full-scale experiment. The method, called CONTRACID, is based on the cation exchange properties of lake sediment. A sodium carbonate (soda ash) solution is injected into the sediment (by a harrow), so that the sediment becomes sodium stocked. A reverse exchange occurs during subsequent acidification. Liming has a limited effect on humic lakes, since Ca-humates have a reduced reverse exchange ability and also the lime, which remains undissolved, is rendered inactive. Ionic exchange processes and nutrient transport were studied in water/sediment cores andin situ enclosures after additions of soda ash-, lye- and lime solutions with subsequent re-acidification. Sodium carbonate additions in laboratory systems resulted in a sorption to the sediment of 42–62% of the added sodium ions (5 eq m−2) and a release of 14–78 mg Pm−2 sediment. Similar results were obtained in the enclosures where phosphorus release stimulated algal growth. Sediment pH, elevated by the sodium base addition, was lowered by re-acidification. Limed systems released no phosphorus and only about 25% of the added lime remained active for future neutralization. With the injection of the sodium carbonate solution into the sediment, only about 12% of the added sodium was recovered in lake water by spring circulation. Lake water alkalinity was then 0.12 meq l−1 and pH 6.7. Total phosphorus had been raised by 0.007 mg P l−1 causing an increase in phytoplankton biomass. Observations indicate that manipulations of acidic lake sediment according to the CONTRACID method create a long-lasting neutralizing capacity and a biological stimulation (through phosphorus release), which makes the method an attractive alternative to frequent liming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号