首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
2.
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype.  相似文献   

3.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

4.
Alimirah F  Chen J  Basrawala Z  Xin H  Choubey D 《FEBS letters》2006,580(9):2294-2300
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.  相似文献   

5.
Although curcumin has been shown to inhibit prostate tumor growth in animal models, its mechanism of action is not clear. To better understand the anti-cancer effects of curcumin, we investigated the effects of curcumin on cell survival factor Akt in human prostate cancer cell lines, LNCaP, PC-3, and DU-145. Our results demonstrated differential activation of Akt. Akt was constitutively activated in LNCaP and PC-3 cells. Curcumin inhibited completely Akt activation in both LNCaP and PC-3 cells. The presence of 10% serum decreased the inhibitory effect of curcumin in PC-3 cells whereas complete inhibition was observed in 0.5% serum. Very little or no activation of Akt was observed in serum starved DU-145 cells (0.5% serum). The presence of 10% serum activated Akt in DU-145 cells and was not inhibited by curcumin. Results suggest that one of the mechanisms of curcumin inhibition of prostate cancer may be via inhibition of Akt. To our knowledge this is the first report on the curcumin inhibition of Akt activation in LNCaP and PC-3 but not in DU-145 cells.  相似文献   

6.
Resveratrol possesses a wide spectrum of pharmacological properties and has been an ideal alternative drug for the treatment of different cancers, including prostate cancer. However, the mechanisms by which resveratrol inhibits the growth of prostate cancer are still not fully elucidated. To understand the effect of resveratrol on the apoptosis and the epithelial-to-mesenchymal transition (EMT) of prostate cancer as well as its related mechanism, we investigated the potential use of resveratrol in PC-3 prostate cancer cells in vitro using real-time PCR, fluorescence-activated cell sorting, Western blotting, etc. Resveratrol suppresses the PC-3 prostate cancer cell growth and induces apoptosis. Resveratrol also influences the expression of EMT-related proteins (increased E-cadherin and decreased Vimentin expression). Finally, resveratrol also suppressed Akt phosphorylation in PC-3 cells. This study indicates that resveratrol may be a potential anti-cancer treatment for prostate cancer; moreover, it provides new evidence that resveratrol suppresses prostate cancer growth and metastasis.  相似文献   

7.
beta-Lapachone (beta-lap) induces apoptosis in various cancer cells, and its intracellular target has recently been elucidated in breast cancer cells. Here we show that NAD(P)H:quinone oxidoreductase (NQO1/xip3) expression in human prostate cancer cells is a key determinant for apoptosis and lethality after beta-lap exposures. beta-Lap-treated, NQO1-deficient LNCaP cells were significantly more resistant to apoptosis than NQO1-expressing DU-145 or PC-3 cells after drug exposures. Formation of an atypical 60-kDa PARP cleavage fragment in DU-145 or PC-3 cells was observed after 10 microM beta-lap treatment and correlated with apoptosis. In contrast, LNCaP cells required 25 microM beta-lap to induce similar responses. Atypical PARP cleavage in beta-lap-treated cells was not affected by 100 microM zVAD-fmk; however, coadministration of dicoumarol, a specific inhibitor of NQO1, reduced beta-lap-mediated cytotoxicity, apoptosis, and atypical PARP cleavage in NQO1-expressing cells. Dicoumarol did not affect the more beta-lap-resistant LNCaP cells. Stable transfection of LNCaP cells with NQO1 increased their sensitivity to beta-lap, enhancing apoptosis compared to parental LNCaP cells or vector-alone transfectants. Dicoumarol increased survival of beta-lap-treated NQO1-expressing LNCaP transfectants. NQO1 activity, therefore, is a key determinant of beta-lap-mediated apoptosis and cytotoxicity in prostate cancer cells.  相似文献   

8.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.  相似文献   

9.
10.
Olfactory ensheathing glia and Schwann cells: two of a kind?   总被引:22,自引:0,他引:22  
Prostatic carcinoma affects 1 in 11 men and targets bone with sclerotic metastases. The study of prostate carcinoma growth in bone has been hampered by the lack of suitable animal models. We have developed an in vivo model of prostate carcinoma growth in bone by inoculating three human prostate carcinoma cell lines (PC-3, DU-145, and LNCaP) into the tibia of congenitally athymic mice. Developing tumors were analyzed by radiographic, histologic, immunohistochemical, and in situ hybridization examination. Seven of the nine PC-3 inoculated mice and all (9/9) of the DU-145 inoculated mice developed tumors in the injected limb. In contrast, inoculation with LNCaP cells failed to produce tumors (0/9). Radiologically, the tumors had a mixed sclerotic/lytic appearance with extracortical extension. All the PC-3 tumors invaded the bone marrow cavity, cortical bone, and surrounding soft tissue. The DU-145 tumors were confined to the bone marrow cavity in 7/9 animals. CK18 and Ki67 localization identified the human tumor cells and their proliferative activity, respectively. The PC-3- and DU-145-induced tibial tumors expressed alpha(1)I procollagen and osteopontin mRNA, to varying degrees. All the tumors demonstrated an up-regulation of osteoclasts at the bone/tumor interface compared with the control limbs. Thus, this is a reliable and reproducible in vivo model of prostate carcinoma growth in bone enabling the study of the interactions that occur between prostate cancer cells and bone at an important part of the metastatic cascade, namely, growth and invasion at a distant site.  相似文献   

11.
The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.  相似文献   

12.
During the progression of prostate cancer from androgen-dependence or sensitivity to androgen-independence, the overall expression of prostate specific membrane antigen (PSMA) increases with its appearance in plasma membrane. However, surprisingly some androgen-independent metastatic prostate cancer cell lines do not express this protein. Estradiol (E2) and basic fibroblast growth factor (bFGF) due to their recognized and strong involvement in prostate growth, development, and pathology were selected with the aim of restoring the expression of PSMA in markedly dedifferentiated prostate cancer PC-3 cells and in Du 145. E2 (10(-7)-10(-11)M) and bFGF (10ng/ml) stimulated the expression of mRNAs for PSMA (2- to 4-fold increase) that apparently were further translated and processed to its membrane form in LNCaP, PC-3, and Du 145 cells. The values of interaction force between the same anti-PSMA antibodies and all studied cells were almost identical (45-64pN), indicating antigenic similarity of the membrane form of PSMA expressed in LNCaP, PC-3, and Du 145 cells.  相似文献   

13.
Androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, 80-90% of the patients who receive androgen ablation therapy ultimately develop recurrent tumors in 12-33 months after treatment with a median overall survival time of 1-2 years after relapse. LNCaP is a commonly used cell line established from a human lymph node metastatic lesion of prostatic adenocarcinoma. We previously established two relapsed androgen receptor (AR)-rich androgen-independent LNCaP sublines 104-R1 (androgen depleted for 12 months) and 104-R2 cells (androgen depleted for 24 months) from AR-positive androgen-dependent LNCaP 104-S cells. LNCaP 104-R1 and 104-R2 mimics the AR-positive hormone-refractory relapsed tumors in patients receiving androgen ablation therapy. Androgen treatment stimulates proliferation of 104-S cells, but causes growth inhibition and G1 cell cycle arrest in 104-R1 and 104-R2 cells. We investigated the protein expression profile difference between LNCaP 104-S vs. LNCaP 104-R1, 104-R2, PC-3, and DU-145 cells as well as examined the sensitivity of these prostate cancer cells to different chemotherapy drugs and small molecule inhibitors. Compared to 104-S cells, 104-R1 and 104-R2 cells express higher protein levels of AR, PSA, c-Myc, Skp2, BCL-2, P53, p-MDM2 S166, Rb, and p-Rb S807/811. The 104-R1 and 104-R2 cells express higher ratio of p-Akt S473/Akt, p-EGFR/EGFR, and p-Src/Src, but lower ratio of p-ERK/ERK than 104-S cells. PC-3 and DU-145 cells express higher c-Myc, Skp2, Akt, Akt1, and phospho-EGFR but less phospho-Akt and phospho-ERK. Overexpression of Skp2 increased resistance of LNCaP cells to chemotherapy drugs. Paclitaxel, androgen, and inhibitors for PI3K/Akt, EGFR, Src, or Bcl-2 seem to be potential choices for treatment of advanced prostate cancers. Our study provides rationale for targeting Akt, EGFR, Src, Bcl-2, and AR signaling as a treatment for AR-positive relapsed prostate tumors after hormone therapy.  相似文献   

14.

Background

We have previously shown that prostate cancer LNCaP cells are resistant to TRAIL, and downregulation of PI-3K/Akt pathway by molecular and pharmacological means sensitizes cells to undergo apoptosis by TRAIL and curcumin. The purpose of this study was to examine the molecular mechanisms by which resveratrol sensitized TRAIL-resistant LNCaP cells.

Results

Resveratrol inhibited growth and induced apoptosis in androgen-dependent LNCaP cells, but had no effect on normal human prostate epithelial cells. Resveratrol upregulated the expression of Bax, Bak, PUMA, Noxa, Bim, TRAIL-R1/DR4 and TRAIL-R2/DR5, and downregulated the expression of Bcl-2, Bcl-XL, survivin and XIAP. Treatment of LNCaP cells with resveratrol resulted in generation of reactive oxygen species, translocation of Bax and p53 to mitochondria, subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, AIF, Smac/DIABLO and Omi/HtrA2), activation of caspase-3 and caspase-9 and induction of apoptosis. The ability of resveratrol to sensitize TRAIL-resistant LNCaP cells was inhibited by dominant negative FADD, caspase-8 siRNA or N-acetyl cysteine. Smac siRNA inhibited resveratrol-induced apoptosis, whereas Smac N7 peptide induced apoptosis and enhanced the effectiveness of resveratrol.

Conclusion

Resveratrol either alone or in combination with TRAIL or Smac can be used for the prevention and/or treatment of human prostate cancer.  相似文献   

15.
We compared the effects of chelerythrine (CHE) and sanguinarine (SA) on human prostate cancer cell lines (LNCaP and DU-145) and primary culture of human gingival fibroblasts. CHE and SA treatment of cell lines for 24 h resulted in (1) inhibition of cell viability in a dose-dependent manner in all tested cells (as evaluated by MTT test and bromodeoxyuridine incorporation assay); (2) dose-dependent increase in DNA damage in all tested cells (as evaluated by DNA comet assay); (3) changes in apoptosis (assessed by western blot analysis and TUNEL assay); and (4) significant induction of cyclin kinase inhibitors p21Waf1/Cip1 and p27Kip1 in prostate cancer cells (identified by western blot analysis). Our study demonstrates that CHE had significant cytotoxic effect, independent of p53 and androgen status, on human prostate cancer cell lines. Normal gingival fibroblasts and DU-145 cells were more sensitive to the treatment with both alkaloids than were LNCaP cells. CHE and SA may be prospective natural molecules for use in the treatment of prostate cancer owing to their involvement in apoptosis and cell cycle regulation.  相似文献   

16.
Using multiple parallel sequencing on Illumina platform, we identified eight microRNAs that showed significant opposite changes of gene expression in cells of the hormone-sensitive LNCaP prostate cancer cell line and in cells of the hormone-resistant DU-145 cell line, in comparison to the microRNA expression in the normal prostate tissue cells. We found that the insulin-like growth factor 1 receptor (IGF1R) gene is a target of five microRNAs whose expression is increased in LNCaP cells and reduced in DU-145 cells.  相似文献   

17.

Purpose

3,19-(3-Chloro-4-fluorobenzylidene)andrographolide (SRJ23), a new semisynthetic derivative of andrographolide (AGP), exhibited selectivity against prostate cancer cells in the US National Cancer Institute (NCI) in vitro anti-cancer screen. Herein, we report the in vitro growth inhibition and mechanisms of cell cycle arrest and apoptosis induced by SRJ23.

Methods

3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used in assessing in vitro growth inhibition of compounds against prostate cancer (PC-3, DU-145 and LNCaP) and mouse macrophage (RAW 264.7) cell lines. Flow cytometry was utilised to analyse cell cycle distribution, whereas fluorescence microscopy was performed to determine morphological cell death. DNA fragmentation and annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry were done to confirm apoptosis induced by SRJ23. Quantitation of cell cycle and apoptotic regulatory proteins were determined by immunoblotting.

Results

AGP and SRJ23 selectively inhibited the growth of prostate cancer cells compared with RAW 264.7 cells at low micromolar concentrations; however, SRJ23 was more potent. Mechanistically, SRJ23-treated PC-3 cells displayed down-regulation of cyclin-dependent kinase (CDK) 1 without affecting levels of CDK4 and cyclin D1. However, SRJ23 induced down-regulation of CDK4 and cyclin D1 but without affecting CDK1 in DU145 and LNCaP cell lines. DNA histogram analysis revealed that the SRJ23 induced G2/M in PC-3 cells but G1 arrest in DU-145 and LNCaP cells. Morphologically, both compounds induced predominantly apoptosis, which was further confirmed by DNA fragmentation and annexin V-FITC staining. The DNA fragmentation was inhibited in the presence of caspase 8 inhibitor (Z-IETD-FMK). Apoptosis was associated with an increase in caspase 8 expression and activation. This thought to have induced cleavage of Bid into t-Bid. Additionally, increased expression and activation of caspase 9 and Bax proteins were apparent, with a concomitant down-regulation of Bcl-2 protein. Similar apoptosis cascade of events was observed in SRJ23-treated DU145 and LNCaP cell lines.

Conclusion

SRJ23 inhibited the growth of prostate cancer cells by inducing G2/M and G1 arrest via down-regulation of CDK1, and CDK4 and cyclin, respectively, and initiated caspase-8-mediated mitochondrial apoptosis. Taken together, these data support the potential of this compound as a new anti-prostate cancer agent.  相似文献   

18.
Oxysterols are oxidation products of cholesterol. Cholestane-3β, 5α, 6β-triol (abbreviated as triol) is one of the most abundant and active oxysterols. Here, we report that triol exhibits anti-cancer activity against human prostate cancer cells. Treatment of cells with triol dose-dependently suppressed proliferation of LNCaP CDXR-3, DU-145, and PC-3 human prostate cancer cells and reduced colony formation in soft agar. Oral administration of triol at 20 mg/kg daily for three weeks significantly retarded the growth of PC-3 xenografts in nude mice. Flow cytometric analysis revealed that triol treatment at 10–40 µM caused G1 cell cycle arrest while the TUNEL assay indicated that triol treatment at 20–40 µM induced apoptosis in all three cell lines. Micro-Western Arrays and traditional Western blotting methods indicated that triol treatment resulted in reduced expression of Akt1, phospho-Akt Ser473, phospho-Akt Thr308, PDK1, c-Myc, and Skp2 protein levels as well as accumulation of the cell cycle inhibitor p27Kip. Triol treatment also resulted in reduced Akt1 protein expression in PC-3 xenografts. Overexpression of Skp2 in PC-3 cells partially rescued the growth inhibition caused by triol. Triol treatment suppressed migration and invasion of DU-145, PC-3, and CDXR-3 cells. The expression levels of proteins associated with epithelial-mesenchymal transition as well as focal adhesion kinase were affected by triol treatment in these cells. Triol treatment caused increased expression of E-cadherin protein levels but decreased expression of N-cadherin, vimentin, Slug, FAK, phospho-FAK Ser722, and phospho-FAK Tyr861 protein levels. Confocal laser microscopy revealed redistribution of β-actin and α-tubulin at the periphery of the CDXR-3 and DU-145 cells. Our observations suggest that triol may represent a promising therapeutic agent for advanced metastatic prostate cancer.  相似文献   

19.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

20.
Recent studies on the Chinese herbal medicine PC SPES showed biological activities against prostate cancer in vitro, in vivo and in patients with advanced stages of the disease. In investigating its mode of action, we have isolated a few of the active compounds. Among them, baicalin was the most abundant (about 6%) in the ethanol extract of PC SPES, as determined by HPLC. Baicalin is known to be converted in vivo to baicalein by the cleavage of the glycoside moiety. Therefore, it is useful to compare their activities in vitro. The effects of baicalin and baicalein were studied in androgen-positive and -negative human prostate cancer lines LNCaP and JCA-1, respectively. Inhibition of cell growth by 50% (ED(50)) in LNCaP cells was seen at concentrations of 60.8 +/- 3.2 and 29.8 +/- 2.2 microM baicalin and baicalein, respectively. More potent growth inhibitory effects were observed in androgen-negative JCA-1 cells, for which the ED(50) values for baicalin and baicalein were 46.8 +/- 0.7 and 17.7 +/- 3.4, respectively. Thus, it appears that cell growth inhibition by these flavonoids is independent of androgen receptor status. Both agents (1) caused an apparent accumulation of cells in G(1) at the ED(50) concentration, (2) induced apoptosis at higher concentrations, and (3) decreased expression of the androgen receptor in LNCaP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号