首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Acetazolamide-sensitive esterase activity was elevated in branchial homogenates of control juvenile bluegill sunfish, Lepomis macrochirus , acclimated at 20° C but decreased rapidly within 9 h following an acute hypothermal shock to 8° C. After 2 weeks at 8° C, shocked-fish enzyme activity was similar to control fish. At 20° C acclimation temperature, specific activity of bluegills was similar in swimbladder, liver, kidney, gill, spleen, and gonad homogenates and was significantly higher (α=0.05 level) in whole blood homogenates. The pH optima for enzymes extracted from fish acclimated at 20° and 8° C were 7.29 and 8.00, respectively. Polyacrylamide gel electrophoresis (PAGE) demonstrated two distinct forms of acetazolamide-sensitive esterase activity present in both 20° and 8° C acclimated fish. Specific activity for homogenates from both 20° and 8° C acclimated fish differed significantly when assayed at 20° C, suggesting both qualitative and quantitative changes in acetazolamide-sensitive esterase. It is postulated that relatively rapid alterations in esterase activity promote survival in bluegill following acute cold shock through the central role of enzymes in the regulation of plasma ion concentrations and acid/base equilibria.  相似文献   

2.
The histochemical profile of calcium activated acid stable myofibrillar ATPase (mATPase) activity in developing larval and juvenile carp was investigated. In the larval fish, differentiation of pink muscle fibres occurred after metamorphosis which was delayed by a week at 17° C compared to larvae grown at 27° C. After metamorphosis the 27° C group exhibited some small myofibres with acid stable mATPase activity in the deep white muscle. This was similar for the juvenile carp which were acclimated for more than a month at 25° C. In contrast, the cold (12° C) acclimated juvenile fish, contained very few small white muscle fibres with acid stable mATPase activity. It was also noted that the cold acclimated fish had lower background acid stable mATPase activity than the warm acclimated fish. Results indicate that after metamorphosis and more evidently in juveniles, temperature can influence the rate of myofibre hyperplasia.  相似文献   

3.
Myofibrillar ATPase activity was measured in the epaxial musculature of rainbow trout acclimated to 5 and 21.°C, and goldfish acclimated to 5 and 30°C. The acclimated goldfish showed considerable differences in the specific activity and thermostability of this enzyme. However, such alterations were not apparent in the acclimated trout. The evolutionary implications of these findings are discussed.  相似文献   

4.
The standard oxygen consumption rate and the activities of muscle citrate synthase, creatine phosphokinase and lactate dehydrogenase in the tropical fish Oreochromis niloticus acclimated to either 20.5 ± 0.3° C or 26.5 ± 0 ± 5 ± C for at least 3 months were investigated. The standard oxygen consumption rate of individual fish from the two acclimation temperatures was determined at 20, 25 and 30 ± C. At all experimental temperatures, the standard oxygen consumption rate of fish acclimated to 20.5 ± 0.3° C was significantly higher than that of fish kept at 26.5 ± 0.5 ± C. In both groups smaller individuals had a higher oxygen consumption rate than large ones.
Analyses of the activity levels of citrate synthase (CS), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) in both red and white muscles isolated from fish kept under the two temperature regimes were performed at 26 ± C. The activity of CS in both red and white muscles isolated from the 20.5 ± 0.3° C acclimated fish was significantly higher than that of muscles isolated from the 26.5 ± 0.5 ± C acclimation group. Similarly, the CPK activity in white muscles isolated from fish acclimated to 20.5 ± 0.3 ± C was higher than that of muscles obtained from the 26.5 ± 0.5 ± C acclimation group. However, the CPK activity in red muscles isolated from the two fish groups was not significantly different. The opposite results were obtained for LDH activity. For example, the LDH activity of white muscles isolated from fish acclimated to 26.5 ± 0.5 ± C was significantly higher than that of the same muscles but from the 20.5 ± 0.3 ± C acclimated fish. No differences were observed in the LDH activity of red muscles isolated from the two fish groups.  相似文献   

5.
Experiments to determine the growth rate of eels ( Anguilla anguilla L.) at different temperatures are described and show the optimum temperature for growth to be 22–23° C. The ultimate upper lethal temperature was found to be 38° C and the critical thermal maximum varied from 33 to 39° C for fish acclimated at 14 to 29° C. An attempt was also made to determine lower lethal temperatures. Eels enter a state of torpor at temperatures varying from 3° C for fish acclimated at 29° C to less than 1° C for fish acclimated at 23° C or below. The results have been used to estimate the growth rates expected from eels cultured in power station cooling water using different types of temperature control.  相似文献   

6.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

7.
The osmolality and ionic composition of the blood of juvenile Atlantic cod Gadus morhua and their response to conditions of reduced temperature and salinity in summer‐ and winter‐acclimated individuals was investigated. Haematocrit percentage was relatively stable throughout the experimental procedures. Summer‐acclimated juvenile Atlantic cod had higher plasma osmolality than winter‐acclimated fish in ambient conditions. Plasma Na+ levels were, however, higher in winter conditions, while Cl did not vary between seasons. Temperature reduction (12, 9 and 6° C in summer and to 6 and 4° C in winter) induced a significant response in plasma osmolality and Na+ levels in summer, but only in Na+ levels in winter‐acclimated fish. A pronounced effect was seen in the summer 6° C treatment. Salinity treatments (24, 16 and 8) had a significant effect on almost all the variables in both summer and winter and resulted generally in dilution of ionic and osmotic concentrations of the plasma. This effect was pronounced in the lowest temperature treatments, with the greatest reduction observed in the summer 6° C treatment. This could suggest that winter‐acclimated fish are physiologically adapted to cope with lower seawater temperatures as opposed to summer‐acclimated fish.  相似文献   

8.
Cod were acclimated to 5 and 15° C (cold and warm acclimation, respectively) for at least 43 days after which tissue-somatic indices, tissue protein, DNA content, and cytochrome c oxidase (CCO) activity were measured. Liver, stomach, intestine, total heart and ventricle-somatic indices were all increased significantly in the cold acclimated animals compared with their warm acclimated counterparts. There were no differences in gill or white muscle-somatic indices between the acclimation temperatures. Tissue protein concentration (mg protein g tissue−1) was generally unaffected by temperature acclimation. Cold acclimation resulted in higher white muscle and lower ventricle CCO specific activities(μmol cytochrome c oxidized min−1· g tissue−1) compared with the respective warm acclimated tissues. No significant differences in CCO specific activity were observed in the remaining tissues (when measured at an intermediate temperature of 10° C). Total tissue CCO activity (measured at an intermediate temperature of 10° C) did not differ significantly between the cold and warm acclimated fish.  相似文献   

9.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

10.
Groups of common carp were acclimated to either 10°C or 28°C for 6 weeks. Fish were then exercised at 10°C or 20°C, and the critical swimming speed (fatigue velocity) was measured. At 10°C, cold-acclimated carp were capable of significantly higher swimming speeds. When exercised at 20°C. however, the situation was reversed, and warm-acclimated carp exhibited improved swimming ability. These results provide direct evidence that acclimation of the contractile proteins is beneficial across a wide temperature range. Following acclimation to low environmental temperatures the critical swimming speed exhibited a Q10 of only 1.1 for the temperature range 10–20°C. compared to a value of 2.9 for fish acclimated to the higher temperature.  相似文献   

11.
12.
Ventilation frequency patterns of Trinectes maculatus, Morone americana and Leiostomus xanthurus were used to evaluate potential thermal stress after exposure to moderate temperature increases. Fish acclimated to 5°, 15° and 25° C were exposed to a 5°C T; fish acclimated to 30° C were exposed to a 2.5° C A T. Ventilation frequencies were measured at each acclimation temperature before the fishes were exposed over a 15-min period to the increased temperatures. Ventilation rates were then measured at the elevated temperatures for the next 24 h. Significant increases in rate frequency occurred after the temperature increases in T. maculatus and M. Americana acclimated to 5°, 15° and 25° C and in L. xanthurus acclimated to 15°, 25° and 30°C. In general, rate frequencies increased as the temperature increased. Ventilation rates stabilized quickly at the higher temperatures and remained relatively constant throughout the remaining exposure period. Acclimated rate-temperatures curves (R- T curves), acute R- T curves and Q10 temperature coefficients used to assess the significance of the changes in rate frequency and to compare the species in an ecologically meaningful way, showed that several adaptive types occurred among and between species. The Q,10's of the acute R- T curves, in most cases, were found to approximate those values derived for the acclimated R-T curve. This suggests that the temperature increases had a negligible effect, that is, little or no thermal stress occurred.  相似文献   

13.
Summary Urine flow increased with acute temperature increases and showed temperature acclimation. When measured at 20 °C the urine flow of 10 °C acclimated fish was 3.2 times greater than the urine flow of 30 °C acclimated fish. In fish acclimated to 24 °C renal reabsorption of Na and Cl was independent of temperature over an intermediate range of temperatures (14–24 °C) but near the lower lethal temperature (6.5 °C) renal Na and Cl reabsorption was inhibited. Water permeability of the renal tubules was not affected by acute temperature change between 6.5 and 24 °C. Urine osmolality and urine Na, K and Cl concentrations showed nearly perfect temperature compensation in fish acclimated to 10 °C and 30 °C. The rate of renal excretion of Na and Cl showed temperature acclimation in that Na and Cl ecxretion measured at 20 °C was 7 to 8 times greater in 10 °C acclimated fish than in 30 °C acclimated fish. The rate of excretion of Na and Cl measured at 30 °C in 30 °C acclimated fish was approximately 1.7 times the rate of excretion measured at 10 °C in 10 °C acclimated fish.The branchial uptake of Na, measured in tap water, of fish acclimated to 10, 20 and 30 °C in demineralized water increased with acute increases in temperature. When the three acclimation groups were compared at an intermediate temperature (20 °C), the 10 °C acclimated group showed the highest rate of net uptake, and the 30 °C group the lowest rate of uptake. This apparent temperature acclimation of Na uptake was correlated with differences in the plasma Na concentration of the three acclimation groups. Plasma Cl concentrations were also correlated with acclimation temperature in fish acclimated in demineralized water, but the rate of net Cl uptake was considerably less than that for Na. Sodium and Cl uptake in fish which had been acclimated in tap water was very variable and was not clearly affected by acute changes in temperature. Uptake of Na and Cl by fish held in tap water did not show temperature acclimation. The difference between uptake and excretion of fish acclimated in tap water was not significantly different from zero, indicating that the fish were in salt balance.The study was supported by National Institutes of Health Grant GM 16932-02 to Dr. Bodil Schmidt-Nielsen. I am grateful to Dr. Schmidt-Nielsen for many useful discussions during the course of this work.  相似文献   

14.
Adult rainbow trout were acclimated to three different temperature and photoperiod regimes: 17°C, 14 h light: 10 h dark (summer); 7° C, 14 h light: 10 h dark; and 5° C, 8 h light: 16 h dark (winter). Blood was collected from these fish after 40 days acclimation, and the response of red blood cells to in vitro adrenergic stimulation was assessed. To examine potential seasonal variations in endogenous levels of circulating catecholamines, plasma levels of adrenaline (Ad) and noradrenaline (NAd) were measured at rest and after exercise. At rest, there were no differences between groups in plasma levels of either Ad or NAd, but, after exercise, the pattern of catecholamine elevation differed. In fish acclimated to 17 and 7° C in summer, Ad and NAd increased by about the same amount (10–15 times). In fish acclimated to 5° C in winter, NAd increased about three-fold, compared to the near 50-fold increase in Ad levels. Whether this difference between groups can be attributed to seasonal influences is unclear. At both low (0·5%) and high (2%) PCO 2, adrenergic stimulation (2 × 10-7 M Ad) of trout red cells in vitro led to a significant reduction in MCHC (mean cell [haemoglobin]), compared to non-stimulated cells. However, only at the high PCO 2 were pHe and red cell pHi significantly different from those in the non-stimulated cells: the latter was higher and the former lower in the stimulated cells. There were no differences in the response of red cells to adrenergic stimulation between groups of fish. Under the conditions of the present study no influence of season and/or temperature on the in vitro response of trout red cells to adrenergic stimulation was shown.  相似文献   

15.
In short-horn sculpin Myoxocephalus scorpius , the power requirements for fast-start swimming and the length-specific velocity of the curvature wave travelling down the spine ( Û ) were not influenced significantly by acclimation to summer and winter conditions at test temperatures of 5 and 15° C. However, in-vivo and in-vitro muscle performance exhibited acclimation responses at 15° C. Seasonal acclimation altered the escape performance curves for power and Û significantly over a wider temperature range of 0·8–20° C. Û was significantly higher at 20° C in the summer- than winter-acclimation group. The acclimation of lower levels of physiological organization at 15° C may thus serve to extend the thermal limits for escape performance in summer acclimated fish.  相似文献   

16.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

17.
1. The maximum velocity (Vmax) and apparent Michaelis constant (Km) of brain and liver monoamine oxidase (MAO) in goldfish were different in fish acclimated to 22 degrees C and to 7 degrees C ambient temperature. 2. In brain, Vmax and Km were dependent upon incubation temperature, but both parameters were lower in 7 degrees C, adapted fish over most of the incubation temperature range. 3. The values obtained for Km showed a plateau at incubation temperatures at and below 25 degrees C for warm water fish, and at and below 20 degrees C for cold water fish. The activation energy of brain MAO was lower in fish adapted to the colder water. 4. These results show that goldfish MAO displays changes in functional activity in response to a change in environmental temperature. Apparently the purpose of this adaptation is to compensate for a reduction in enzyme concentration.  相似文献   

18.
The concentrations of phosphorylcreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), inorganic phosphate (Pi), pyruvate and lactate were determined in freeze-clamped fast muscle samples from Oreochromis alcalicus grahami a fish adapted to extreme alkalinity (∼ pH 10·0) and high temperatures (Lake Magadi, Kenya). Specimens were analysed from both geothermally heated hotsprings (35–37°C) and from isolated cool pools (28°C) and from stocks acclimated to 20°C in the laboratory. The ratios of (ATP)/(ADP) and (ATP)/(ADP) (Pi) decreased with increasing body temperature consistent with an increase in glycolysis and tissue respiration rates, respectively. The apparent equilibrium constant of creatine kinase (KCK), (creatine) (ATP)/(phosphorylcreatine) (ADP) was found to decrease with increasing temperature: 20·2 (20°C), 13·9 (28°C), 8·0 (37°C). A near constant muscle and blood pH (or slight increase in alkalinity with higher temperatures) was found regardless of body temperature (Blood pH 7·64, 7·74, muscle pH 7·27, 7·51 at 20°C and 35°C, respectively). These results are consistent with an unusual pattern of acid-base regulation in this species.  相似文献   

19.
Two cultivars of wheat ( Triticum aestivum L.), a winter wheat, Kharkov, and a spring wheat, Glenlea, were acclimated under controlled conditions at 2 temperatures, 5°C and 25°C with a 12-h photoperiod. Water content, protein and proline concentrations were determined. Enzymatic properties (activity and apparent energy of activation) were investigated for enzymatic systems involved in 2 pathways of proline metabolism, the glutamic acid and ornithine pathways. Four enzymes were studied, proline dehydrogenase (PDH, EC 1.5.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), glutamine synthetase (GS, EC 6.3.1.2) and ornithine transaminase (OT, EC 2.6.1.13). Cold acclimation led to an accumulation of proline, a decrease in water content and an increase in soluble protein, especially in winter wheat. For both cultivars, cold acclimation modulated enzyme properties of PDH and GDH. Increased activities of GS and OT were observed as a result of cold acclimation in both cultivars, with the greatest increase in Kharkov. The apparent energy of activation of these 2 enzymes decreased, particularly for Kharkov, which accumulated proline in cold conditions.  相似文献   

20.
Studies on fish behavioural and neurophysiological responses to water temperature change may contribute to an improved understanding of the ecological consequences of global warming. We investigated behavioural and neurochemical responses to water temperature in European sea bass (Dicentrarchus labrax) acclimated to three temperatures (18, 22 and 28°C). After 21 d of acclimation, three groups of 25 fish each were exposed to four behavioural challenges (foraging, olfactory, aversive and mirror tests). The expression of choline acetyltransferase (ChAT) was then analysed by Western blotting in CNS homogenates (from a subset of the same fish) as a marker for cholinergic system activity. In both foraging and olfactory tests, fish acclimated to 28°C exhibited significantly higher arousal responses than fish acclimated to lower temperatures. All specimens showed fright behaviour in the aversive test, but the latency of the escape response was significantly less in the fish at 28°C. Finally, the highest mirror responsiveness was exhibited by the fish acclimated to 22°C. As in the case of cholinergic neurotransmission, significantly higher ChAT levels were detected in the telencephalon, diencephalon, cerebellum and spinal cord of fish acclimated to 22 or 28°C in comparison with those maintained at 18°C. Lower ChAT levels were detected in the mesencephalon (optic tectum) at 22 and 28°C than at 18°C. These data indicate that neuronal functions are affected by water temperature. Increases or decreases in ChAT expression can be related to the functional modulation of brain and spinal cord centres involved in behavioural responses to temperature change. Overall, the results of this study suggest that the environmental temperature level influences behaviour and CNS neurochemistry in the European sea bass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号