首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
System A-mediated amino acid transport across the placenta is important for the supply of neutral amino acids needed for fetal growth. All three system A subtypes (SNAT1, 2, and 4) are expressed in human placental trophoblast suggesting there is an important biological role for each. Placental system A activity increases as pregnancy progresses, coinciding with increased fetal nutrient demands. We have previously shown SNAT4-mediated system A activity is higher in first trimester than at term, suggesting that SNAT1 and/or SNAT2 are responsible for the increased system A activity later in gestation. However, the relative contribution of each subtype to transporter activity in trophoblast at term has yet to be evaluated. The purpose of this study was to identify the predominant subtype of system A in cytotrophoblast cells isolated from term placenta, maintained in culture for 66 h, by: (1) measuring mRNA expression of the three subtypes and determining the Michaelis-Menten constants for uptake of the system A-specific substrate, 14C-MeAIB, (2) investigating the contribution of SNAT1 to total system A activity using siRNA. Results: mRNA expression was highest for the SNAT1 subtype of system A. Kinetic analysis of 14C-MeAIB uptake revealed two distinct transport systems; system 1: Km = 0.38 ± 0.12 mM, Vmax = 27.8 ± 9.0 pmol/mg protein/20 min, which resembles that reported for SNAT1 and SNAT2 in other cell types, and system 2: Km = 45.4 ± 25.0 mM, Vmax = 1190 ± 291 pmol/mg protein/20 min, which potentially represents SNAT4. Successful knockdown of SNAT1 mRNA using target-specific siRNA significantly reduced system A activity (median 75% knockdown, n = 7). Conclusion: These data enhance our limited understanding of the relative importance of the system A subtypes for amino acid transport in human placental trophoblast by demonstrating that SNAT1 is a key contributor to system A activity at term.  相似文献   

2.
Betaine uptake is induced by hypertonic stress in a placental trophoblast cell line, and involvement of amino acid transport system A was proposed. Here, we aimed to identify the subtype(s) of system A that mediates hypertonicity-induced betaine uptake. Measurement of [14C]betaine uptake by HEK293 cells transiently transfected with human or rat sodium-coupled neutral amino acid transporters (SNATs), SNAT1, SNAT2 and SNAT4 revealed that only human and rat SNAT2 have betaine uptake activity. The Michaelis constants (Km) of betaine uptake by human and rat SNAT2 were estimated to be 5.3 mM and 4.6 mM, respectively. Betaine exclusively inhibited the uptake activity of SNAT2 among the rat system A subtypes. We found that rat SNAT1, SNAT2 and SNAT4 were expressed at the mRNA level under isotonic conditions, while expression of SNAT2 and SNAT4 was induced by hypertonicity in TR-TBT 18d-1 cells. Western blot analyses revealed that SNAT2 expression on plasma membrane of TR-TBT 18d-1 cells was more potently induced by hypertonicity than that in total cell lysate. Immunocytochemistry confirmed the induction of SNAT2 expression in TR-TBT 18d-1 cells exposed to hypertonic conditions and indicated that SNAT2 was localized on the plasma membrane in these cells. Our results indicate that SNAT2 transports betaine, and that tonicity-sensitive SNAT2 expression may be involved in regulation of betaine concentration in placental trophoblasts.  相似文献   

3.
Novak D  Quiggle F  Haafiz A 《Biochimie》2006,88(1):39-44
Amino acid transport System A (SysA) plays an important role in mediating the transplacental transfer of neutral amino acids from mother to fetus. Given that prior work has demonstrated that SysA activity is regulated, both over gestation and in response to dietary restriction during pregnancy, we examined the response of SysA activity and sodium-dependent neutral amino acid transporter (SNAT; responsible for SysA activity) expression to cAMP analogues and amino acid deprivation in BeWo cells, an accepted model of placental syncytia. SysA activity was unaffected by forskolin, a cAMP agonist, at 48 and 72 h. Amino acid depletion was associated with an up-regulation of SysA activity, largely mediated through an enhancement of SNAT2 (Slc38a2) expression at both the protein and mRNA level. SNAT1 (Slc38a1) expression did not change in response to amino acid depletion, while SNAT4 (Slc38a4) could not be detected. In summary, SysA activity in BeWo cells responds to amino acid depletion through the differential regulation of SNAT subtypes.  相似文献   

4.
Amino acid transport via system A plays an important role during lactation, promoting the uptake of small neutral amino acids, mainly alanine and glutamine. However, the regulation of gene expression of system A [sodium-coupled neutral amino acid transporter (SNAT)2] in mammary gland has not been studied. The aim of the present work was to understand the possible mechanisms of regulation of SNAT2 in the rat mammary gland. Incubation of gland explants in amino acid-free medium induced the expression of SNAT2, and this response was repressed by the presence of small neutral amino acids or by actinomycin D but not by large neutral or cationic amino acids. The half-life of SNAT2 mRNA was 67 min, indicating a rapid turnover. In addition, SNAT2 expression in the mammary gland was induced by forskolin and PMA, inducers of PKA and PKC signaling pathways, respectively. Inhibitors of PKA and PKC pathways partially prevented the upregulation of SNAT2 mRNA during adaptive regulation. Interestingly, SNAT2 mRNA was induced during pregnancy and to a lesser extent at peak lactation. beta-Estradiol stimulated the expression of SNAT2 in mammary gland explants; this stimulation was prevented by the estrogen receptor inhibitor ICI-182780. Our findings clearly demonstrated that the SNAT2 gene is regulated by multiple pathways, indicating that the expression of this amino acid transport system is tightly controlled due to its importance for the mammary gland during pregnancy and lactation to prepare the gland for the transport of amino acids during lactation.  相似文献   

5.
This report describes the primary structure and functional characteristics of human ATA1, a subtype of the amino acid transport system A. The human ATA1 cDNA was isolated from a placental cDNA library. The cDNA codes for a protein of 487 amino acids with 11 putative transmembrane domains. The transporter mRNA ( approximately 9.0 kb) is expressed most prominently in the placenta and heart, but detectable level of expression is evident in other tissues including the brain. When expressed heterologously in mammalian cells, the cloned transporter mediates Na(+)-coupled transport of the system A-specific model substrate alpha-(methylamino)isobutyric acid. The transport process is saturable with a Michaelis-Menten constant of 0. 89 +/- 0.12 mM. The Na(+):amino acid stoichiometry is 1:1 as deduced from the Na(+)-activation kinetics. The transporter is specific for small short-chain neutral amino acids. The gene for the transporter is located on human chromosome 12.  相似文献   

6.
Both placental system A activity and fetal plasma cortisol concentrations are associated with intrauterine growth retardation, but it is not known if these factors are mechanistically related. Previous functional studies using hepatoma cells and fibroblasts produced conflicting results regarding the regulation of system A by cortisol. Using the b30 BeWo choriocarcinoma cell line, we investigated the regulation of system A by cortisol. System A function was analyzed using methyl amino isobutyric acid (MeAIB) transcellular transport studies. Transporter expression [system A transporter (SNAT)1/2] was studied at the mRNA and protein levels using Northern and Western blotting, respectively. Localization was carried out using immunocytochemistry. The [(14)C]MeAIB transfer rate across BeWo monolayers after preincubation with cortisol for 24 h was significantly increased compared with control. This was associated with a relocalization of the SNAT2 transporter at lower cortisol levels and significant upregulation of mRNA and protein expression levels at cortisol levels >1 microM. This is the first study to show functional and molecular regulation of system A by cortisol in BeWo cells. It is also the first study to identify which system A isoform is regulated. These results suggest that cortisol may be involved in upregulation of system A in the placenta to ensure sufficient amino acid supply to the developing fetus.  相似文献   

7.
8.
9.
Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members.  相似文献   

10.
11.
目的检测肝脏胆盐载体FIC1(ATP881)、BSEP(ABCB11)和MDR3(ABCB4)在正常绒毛和胎盘组织中转录水平和蛋白水平的表达情况,探讨肝脏胆盐载体在人类胎盘胆汁酸排泌过程中的作用和功能。方法选择正常妊娠6~12周的孕妇(早孕组)15例和妊娠38~40周的孕妇(晚孕组)20例,采用实时定量逆转录一聚合酶链反应技术(realtimeRT.PCR)检测绒毛和胎盘组织中上3种载体的mRNA,采用免疫组织化学(S-P)法分别检测后两种载体蛋白在上述35例胎盘组织中的表达,并通过免疫印迹技术分析这两种载体在胎盘组织中的含量。结果在所有绒毛和胎盘组织中均检测到3种载体的mRNA。MDR3mRNA在正常绒毛中的表达量较低为(0.15±0.04),正常晚期妊娠胎盘中表达量为(0.58±0.06),两者比较有显著性差异(P〈0.05)。与早孕组相比,FIC1mRNA表达水平明显由(0.65±0.03)下降至(0.23±0.04),差别有非常显著意义(P〈0.01)。而BSEPmRNA表达无改变(0.06±0.01和0.05±0.01)(P〉0.05)。MDR3蛋白、BSEP蛋白在正常绒毛和胎盘组织中均有表达,且两种载体在正常早孕绒毛及晚期妊娠胎盘分布范围基本一致,主要分布在绒毛合体滋养细胞母体面游离缘。MDR3、BSEP蛋白在绒毛和晚期妊娠胎盘中的表达趋势与其mRNA相似,MDR3蛋白Western印迹条带的光密度值为(11357±3618)(早孕组)和(46753±2834)(晚孕组),两组比较有显著性差异(P〈0.05)。BSEP蛋白早孕组Western印迹条带的光密度值为(1296±436),晚孕组为(1798±575),两组比较差异无显著性(P〉0.05)。结论3种肝脏胆盐载体FIC1、MDR3和BSEP在正常绒毛和胎盘组织中均有表达,可能参与了胎盘胆汁酸的排泌功能。妊娠期间MDR3、FIC1和BSEPmRNA和蛋白表达发生变化,可能与胎儿生长发育的需要有关。  相似文献   

12.
Members of system N/A amino acid transporter (SNAT) family mediate transport of neutral amino acids, including l-alanine, l-glutamine, and l-histidine, across the plasma membrane and are involved in a variety of cellular functions. By using chemical labeling, glycosylation, immunofluorescence combined with molecular modeling approaches, we resolved the membrane topological structure of SNAT4, a transporter expressed predominantly in liver. To analyze the orientation using the chemical labeling and biotinylation approach, the "Cys-null" mutant of SNAT4 was first generated by mutating all five endogenous cysteine residues. Based on predicted topological structures, a single cysteine residue was introduced individually into all possible nontransmembrane domains of the Cys-null mutant. The cells expressing these mutants were labeled with N-biotinylaminoethyl methanethiosulfonate, a membrane-impermeable cysteine-directed reagent. We mapped the orientations of N- and C-terminal domains. There are three extracellular loop domains, and among them, the second loop domain is the largest that spans from amino acid residue ~242 to ~335. The orientation of this domain was further confirmed by the identification of two N-glycosylated residues, Asn-260 and Asn-264. Together, we showed that SNAT4 contains 10 transmembrane domains with extracellular N and C termini and a large N-glycosylated, extracellular loop domain. This is the first report concerning membrane topological structure of mammalian SNAT transporters, which will provide important implications for our understanding of structure-function of the members in this amino acid transporter family.  相似文献   

13.
Skeletal muscle serves as the body's major glutamine repository, and releases glutamine at enhanced rates during diabetes, but whether all muscles are equally affected is unknown. System N(m) activity mediates most trans-sarcolemmal glutamine movement, and although two System N (SN) isoforms have been identified (SN1/sodium-coupled neutral amino acid transporter or System N and A transporters [SNAT]-3; and SN2/SNAT5), their expression in skeletal muscle remains controversial. Here, the impact of Type I diabetes on glutamine uptake and System N transporter expression were examined in fast- and slow-twitch skeletal muscle from spontaneously diabetic (BB/Wor-DP) rats. Net glutamine uptake in fast-twitch fibers was decreased 75%-95%, but enhanced more than 2-fold in slow-twitch muscle from diabetic animals relative to nondiabetic controls. Both SNAT3 and SNAT5 mRNA were expressed in both muscle fiber types and their abundance was unaffected by diabetes. This represents the first report of differential fiber-specific effects of diabetes on skeletal muscle glutamine transport and the co-expression of distinct System N transporters in skeletal muscle.  相似文献   

14.
The sodium-dependent neutral amino acid transporter 2 (SNAT2), which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999) from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI) of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P < 0.05). Studies with enterocytes in vitro showed that amino acid starvation and supplementation with glutamate, arginine or leucine enhanced, while supplementation with glutamine reduced, SNAT2 mRNA expression (P < 0.05). These results regarding the characteristics and regulation of SNAT2 should help to provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.  相似文献   

15.
16.
17.
Ontogeny of the Neutral Amino Acid Transporter SNAT1 in the Developing Rat   总被引:2,自引:0,他引:2  
Summary System A is a highly regulated, Na+-dependent transporter that accepts neutral amino acids containing short, polar side chains. System A plays an important role during rat development as decreased pup weights are observed in dams infused during gestation with a non-metabolizable System A substrate. Given the potential importance of SNAT1 during development in the rat brain, we examined whether SNAT1 would be present at an earlier gestation during organogenesis in multiple organs by immunohistochemistry and immunoblotting. SNAT1 protein was observed in the developing lungs, intestines, kidneys, heart, pancreas, and skeletal muscle of rats at prenatal days 14, 17, 19, 21, and postnatal day 2 rats. SNAT1 protein expression decreased in the liver and intestine shortly after birth and as the rat matured. SNAT1 expression was constant throughout development in the lungs and kidney and increased in the heart from prenatal day 19 to postnatal day 2. Highest levels of expression in older animals were seen in organs undergoing rapid cell division.  相似文献   

18.
The activity of placental amino acid transporters is decreased in intrauterine growth restriction (IUGR), but the underlying regulatory mechanisms have not been established. Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has been shown to decrease the activity of the system L amino acid transporter in human placental villous fragments, and placental mTOR activity is decreased in IUGR. In the present study, we used cultured primary trophoblast cells to study mTOR regulation of placental amino acid transporters in more detail and to test the hypothesis that mTOR alters amino acid transport activity by changes in transporter expression. Inhibition of mTOR by rapamycin significantly reduced the activity of system A (-17%), system L (-28%), and taurine (-40%) amino acid transporters. mRNA expression of isoforms of the three amino acid transporter systems in response to mTOR inhibition was measured using quantitative real-time PCR. mRNA expression of l-type amino acid transporter 1 (LAT1; a system L isoform) and taurine transporter was reduced by 13% and 50%, respectively; however, mTOR inhibition did not alter the mRNA expression of system A isoforms (sodium-coupled neutral amino acid transporter-1, -2, and -4), LAT2, or 4F2hc. Rapamycin treatment did not significantly affect the protein expression of any of the transporter isoforms. We conclude that mTOR signaling regulates the activity of key placental amino acid transporters and that this effect is not due to a decrease in total protein expression. These data suggest that mTOR regulates placental amino acid transporters by posttranslational modifications or by affecting transporter translocation to the plasma membrane.  相似文献   

19.
Na+-Dependent transmembrane transport of small neutral amino acids, such as glutamine and alanine, is mediated, among others, by the neutral amino acid transporters of the solute carrier 1 [SLC1, alanine serine cysteine transporter 1 (ASCT1), and ASCT2] and SLC38 families [sodium-coupled neutral amino acid transporter 1 (SNAT1), SNAT2, and SNAT4]. Many mechanistic aspects of amino acid transport by these systems are not well-understood. Here, we describe a new photolabile alanine derivative based on protection of alanine with the 4-methoxy-7-nitroindolinyl (MNI) caging group, which we use for pre-steady-state kinetic analysis of alanine transport by ASCT2, SNAT1, and SNAT2. MNI-alanine has favorable photochemical properties and is stable in aqueous solution. It is also inert with respect to the transport systems studied. Photolytic release of free alanine results in the generation of significant transient current components in HEK293 cells expressing the ASCT2, SNAT1, and SNAT2 proteins. In ASCT2, these currents show biphasic decay with time constants, tau, in the 1-30 ms time range. They are fully inhibited in the absence of extracellular Na+, demonstrating that Na+ binding to the transporter is necessary for induction of the alanine-mediated current. For SNAT1, these transient currents differ in their time course (tau = 1.6 ms) from previously described pre-steady-state currents generated by applying steps in the membrane potential (tau approximately 4-5 ms), indicating that they are associated with a fast, previously undetected, electrogenic partial reaction in the SNAT1 transport cycle. The implications of these results for the mechanisms of transmembrane transport of alanine are discussed. The new caged alanine derivative will provide a useful tool for future, more detailed studies of neutral amino acid transport.  相似文献   

20.
System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号