首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction – Forsythia suspensa is a commonly used traditional Chinese medicine including phenylethanoid glycosides, lignans, flavonoids, terpenes and volatile oils. Quantification of multi‐components is important for the quality control of Forsythia suspensa. Objective – To establish a liquid chromatography–electrospray ionisation–mass spectrometry method for simultaneous quantification of 14 bioactive constituents of Forsythia suspensa in different places of China and different parts of this herb. Methodology – The optimal chromatographic conditions were achieved on a Kromasil C18 column (150 ¥ 4.6 mm, 5 mm) with gradient elution of methanol, acetonitrile and 0.1% formic acid in 27 min. Detection was performed in negative ionisation mode by monitoring the precursor–product combination in multiple reaction monitoring (MRM) mode. The validation of the method included tests of linearity, sensitivity, precision, repeatability, stability and accuracy. Results – All calibration curves showed good linear regression (r > 0.9990) within test ranges. The established method showed good precision and accuracy with overall intra‐day and inter‐day variations of 0.7–4.3 and 1.1–3.9% respectively, and overall recoveries of 96.65–101.2% for the compounds analysed. Conclusion – The proposed method was successfully applied for the quantitative analysis of 14 constituents in 12 Forsythia suspensa samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Introduction – Isodon nervosa is a commonly used traditional Chinese medicine including diterpenoids, phenolic acids, triterpenoids and volatile oil. Qualitative and quantitative analysis of multi‐components is important for its quality control. Objective – To establish a liquid chromatography–electrospray ionisation–mass spectrometry method for simultaneous analysis of 20 bioactive constituents of Isodon nervosa in different places of China and different parts of this herb. Methodology – The optimal chromatographic conditions were achieved on a C18 column (250 × 4.6 mm, 5 µm) with with linear gradient elution with 0.1% aqueous formic acid : methanol containing 0.1% formic acid at a flow‐rate of 0.7 mL/min in 15 min. The identification and quantification of those analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple‐reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the method was carried out (linearity, precision, accuracy, limit of detection and limit of quantification). Results – The results indicated that the method was simple, rapid, specific and reliable. The proposed method was successfully applied for the qualitative and quantitative analysis of 20 chemical compositions in Isodon nervosa samples. Conclusion – Twenty chemical compositions in 21 batches of wild and cultivated Isodon nervosa samples from different sources had great variation in the contents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Introduction – The two iridoid glycosides kutkoside and picroside‐I are the active hepatoprotective principles of Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), commonly known as Kutki. Quantitation of these phytoconstituents is important for the routine quality control of Kutki extract. Objective – To develop and validate a simple, precise and rapid thin‐layer chromatography (TLC) method for the simultaneous quantitation of kutkoside and picroside‐I in Kutki extract. Methodology – The analysis was performed on a TLC precoated silica gel 60 F254 plate with ethyl acetate:methanol:glacial acetic acid:formic acid (25:5:1:1, v/v/v/v) as mobile phase. Densitometric evaluation of kutkoside and picroside‐I was carried out at 265 nm and the mobile phase showed good resolution with Rf values 0.42 ± 0.03 and 0.61 ± 0.03 for kutkoside and picroside‐I, respectively. The method was validated in terms of specificity, linearity, accuracy and precision. Results – The content of kutkoside and picroside‐I was found to be 2.18 and 1.90%, respectively, and was comparable with those obtained by HPLC. The linearity was found to be in the range of 80–480 ng/spot for both kutkoside and picroside‐I. The average recovery values were found to be 96.5 and 96.0% for kutkoside and picroside‐I, respectively. Conclusion – The developed method was found to be relatively simple, precise and reproducible for the simultaneous quantitation of kutkoside and picroside‐I. The method does not employ any derivatisation procedure and can be used as a quality control tool for the routine analysis of commercial Kutki extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5‐s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively. Chirality 27:223–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Feeding experiments in Impatiens balsamina have established that 2-14C-acetate predominantly labels C-2 of lawsone. This finding confirms previous biosynthetic postulates, indicates that no symmetrical intermediate is involved in lawsone biosynthesis, and sheds light on the final steps in that process. The experimental methods that have been employed in this series of studies are also described in detail.  相似文献   

6.
Introduction – The surge of interest in naturally occurring phytochemicals with anticancer potential has led to the discovery of many molecules, one of them being thymoquinone (TQ) the bioactive constituent of the volatile oil of black seed, Nigella sativa L. (NS). Objective – The aim of the present work was to develop and validate an HPTLC method for determination of TQ in NS extracts, commercially available marketed oils, polyherbal formulations and in lipid‐based oral and parenteral formulations prepared in‐house. Methodology – Analysis of TQ was performed on TLC aluminium plates pre‐coated with silica gel 60F‐254. Linear ascending development was carried out in twin trough glass chamber, saturated with mobile phase consisting of toluene–cyclohexane (8 : 2, v/v) at ambient temperature. Camag TLC scanner III was used for the spectrodensitometric scanning and analysis in absorbance mode at 254 nm. Results – The method was found to give compact spots for TQ (Rf value of 0.28 ± 0.05) and was linear over the range 100–1400 ng/spot (r2 = 0.9921 ± 0.0020). Accuracy, precision and repeatability were all within the required limits. The mean recoveries measured at three concentrations were higher than 95% with RSD ≤ 3%. Conclusion – The HPTLC method developed was found to be relatively simple, rapid and accurate for the routine analysis of TQ in extracts, marketed oils, polyherbal and in‐house formulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Introduction – Dehydrocavidine is a major component of Corydalis saxicola Bunting with sedative, analgesic, anticonvulsive and antibacterial activities. Conventional methods have disadvantages in extracting, separating and purifying dehydrocavidine from C. saxicola. Hence, an efficient method should be established. Objective – To develop a suitable preparative method in order to isolate dehydrocavidine from a complex C. saxicola extract by preparative HSCCC. Methodology – The methanol extract of C. saxicola was prepared by optimised microwave‐assisted extraction (MAE). The analytical HSCCC was used for the exploration of suitable solvent systems and the preparative HSCCC was used for larger scale separation and purification. Dehydrocavidine was analysed by high‐performance liquid chromatography (HPLC) and further identified by ESI‐MS and 1H NMR. Results – The optimised MAE experimental conditions were as follows: extraction temperature, 60°C; ratio of liquid to solid, 20; extraction time, 15 min; and microwave power, 700 W. In less than 4 h, 42.1 mg of dehydrocavidine (98.9% purity) was obtained from 900 mg crude extract in a one‐step separation, using a two‐phase solvent system composed of chloroform–methanol–0.3 m hydrochloric acid (4 : 0.5 : 2, v/v/v). Conclusion – Microwave‐assisted extraction coupled with high‐speed counter‐current chromatography is a powerful tool for extraction, separation and purification of dehydrocavidine from C. saxicola. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Introduction – Arbutin is a skin‐whitening agent that occurs naturally in the bark and leaves of various plants. It is commonly quantified in plant extracts and skin‐whitening products by HPLC. Objective – To develop an alternative gas chromatographic method for the separation and quantification of arbutin in Origanum majorana and Arctostaphylos uva‐ursi extracts. Methodology – N,O‐Bis(trimethylsilyl)acetamide and trimethylchlorosilane were used as silylation reagents, and the gas chromatographic separation of silylated extracts and standards was performed using a DB‐5 narrow bore column. GC‐MS was used for the compound identification, and the quantification was carried out by GC‐FID. The quantitative results were compared with those of HPLC analysis. Results – The developed method gave a good sensitivity with linearity in the range 0.33–500 mg/mL and recovery >98%, allowing the quantification of arbutin in O. majorana and A. uva‐ursi extracts. The relative standard deviations (RSD) relating to intra‐day and inter‐day precision were <0.002% and <4.8%, respectively. The GC results correlated well with those obtained by HPLC analysis. Conclusion – The analysis of marjoram and bearberry samples showed that the established GC method was rapid, selective, and demonstrated that arbutin could be screened alternatively by gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Introduction – Cortex Mori, one of the well‐known traditional Chinese herbal medicines, is derived from the root bark of Morus alba L. according to the China Pharmacopeia. Stilbene glycosides are the main components isolated from aqueous extracts of Morus alba and their content varies depending on where Cortex Mori was collected. We have established a qualitative and quantitative method based on the bioactive stilbene glycosides for control of the quality of Cortex Mori from different sources. Objective – To develop a high‐performance liquid chromatography coupled with ultraviolet absorption detection for simultaneous quantitative determination of five major characteristic stilbene glycosides in 34 samples of the root bark of Morus alba L. (Cortex Mori) from different sources. Methodology – The analysis was performed on an ODS column using methanol‐water‐acetic acid (18: 82: 0.1, v/v/v) as the mobile phase and the peaks were monitored at 320 nm. Results – All calibration curves showed good linearity (r ≥ 0.9991) within test ranges. This method showed good repeatability for the quantification of these five components in Cortex Mori with intra‐ and inter‐day standard deviations less than 2.19% and 1.45%, respectively. Conclusion – The validated method was successfully applied to quantify the five investigated components, including a pair of cis‐trans‐isomers 1 and 2 and a pair of isomers 4 and 5 in 34 samples of Cortex Mori from different sources. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Introduction – Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. Objective – To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high‐speed counter‐current chromatography (HSCCC). Methodology – Following an initial clean‐up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC‐PAD, ESI‐MS, 1H‐NMR and 13C‐NMR. Results – The separation was performed using a two‐phase solvent system composed of ethyl acetate–methanol–water–acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow‐rate of 1.0 mL/min in the head‐to‐tail elution mode. Ultimately, 5.0 mg syringetin‐3‐O‐β‐d‐glucoside, 6.5 mg quercetin‐3‐O‐β‐d‐glucoside, 12.8 mg isorhamnetin‐3‐O‐β‐d‐glucoside and 32.5 mg kaempferol‐3‐O‐β‐d‐glucoside were obtained from 125 mg crude sample. Conclusion – The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a novel hormone‐based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12‐mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti‐PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐hydroxysuccinimide (EDC/NHS) couple, self‐assembled monolayer structure from one of the other NH2 sites. The immobilization of anti‐PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC–NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10–60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:815–822, 2015  相似文献   

12.
Aim: To develop and to validate a method for the quantification of Lawsonia intracellularis in porcine faeces by real‐time PCR. Methods and Results: A real‐time PCR including a calibrator based on plasmid DNA for quantification by means of ΔΔCt method was evaluated. The parameters specificity, detection limit, quantification limit, linearity, range, repeatability, precision and recovery were validated. The detection limit of the agent was 1 copy per reaction, and quantification was reliable between 101 and 107 copies per μl reaction volume. The linearity calculated by logistic regression revealed a slope of ?3·329 reflecting an efficiency of 99·7% for the assay. Moreover, it was shown that storage of samples and repetition of tests including DNA isolation by same or other investigators did not influence the outcome. Conclusion: The quantification method described herein revealed consistent results for the quantitation of L. intracellularis in porcine faeces samples. Significance and Impact of the Study: In contrast to common PCR in combination with gel electrophoresis, this validated quantification method based on real‐time PCR enhances a reliable quantification and is even more sensitive.  相似文献   

13.
4-(2′-Carboxyphenyl)-4-oxobutyric acid (6) has been detected in cuttings of Impatiens balsamina. It is labelled under conditions where activity from U-14C-glutamate is incorporated effectively into lawsone (1). 3-(2′-Carboxyphenyl)-3-oxopropionic acid (7) has also been encountered in the cuttings.  相似文献   

14.
Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Objective – Under the same analytical conditions and using GC‐FID and GC‐MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). Methodology – The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Results – Employing MAD (100°C, 30 min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α‐terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β‐damascenone as a major constituent. Conclusion – The MAD method appears to be more efficient than HD: after 30 min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3 h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Introduction – Rhizoma Atractylodes Macrocephalae (RAM) contains several sesquiterpene compounds including atractylenolide III (AO‐III). This bioactive compound may be used as a chemical marker for the quality control of different processed RAM products. Objective – To develop and validate an RP‐HPLC method for the quantitative determination of AO‐III in RAM and in a variety of processed RAM products. Methodology – HPLC was carried out using a Kromssil C18 RP‐column eluted with methanol–water (70:30) at a flow rate of 1.0 mL/min and with UV detection at 220 nm. Full validation was performed using standard methods. Results – The linear range of AO‐III was 5–50 µg/mL; the regression equation was y = 10210x + 11194 (r = 0.9994) and the average recovery was 101.08% (RSD = 0.98%). The detection and quantification limits for AO‐III were determined to be 0.005 and 0.018 µg/mL at signal‐to‐noise ratios of approximately 3:1 and 10:1, respectively. Conclusion – The described HPLC method is appropriate for quality assurance and differentiation of AO‐III in RAM and different processed products.  相似文献   

16.
Artocarpin-rich extract (ARE) was prepared using a green technology and standardized to contain 49·6% w/w artocarpin, while lawsone methyl ether was prepared using a green semi-synthesis. ARE, LME and ampicillin exhibited weak anti-MRSA activity with the MICs of 31·2–62·5 µg/ml. Based on the checkerboard assay, the synergistic interaction between ARE (0·03 µg/ml) and LME (0·49 µg/ml) against four MRSA isolates were observed with the fractional inhibitory concentration index (FICI) value of 0·008, while those of ARE (1·95–7·81 µg/ml) and ampicillin (0·49 µg/ml) as well as LME (0·49–1·95 µg/ml) and ampicillin (0·49 µg/ml) were 0·016–0·257. The time kill confirmed the synergistic interactions against MRSA with different degrees. The combination of ARE and LME as well as its combinations with ampicillin altered the membrane permeability of MRSA, which led to release of the intracellular materials. In addition, each compound inhibited the biofilm formation of standard MRSA (DMST 20654) and the clinical isolate (MRSA 1096). These findings suggested that cocktails containing ARE and LME might be used to overcome problems associated with MRSA. Additionally, the results implied that combination of either ARE or LME with available conventional antibiotic agents might be effective in countering these perilous pathogens.  相似文献   

17.
Introduction – Artemisia annua is a rich source of biologically active substances such as terpenoids, coumarins and polyacetylenes. These chemicals have been reported to show beneficial pharmacological properties such as antitumor and antibacterial activities. In genetically transformed root cultures of A. annua, three bioactive metabolites, namely, ponticaepoxide (an insecticidal polyacetylene, 1 ), drimartol A (an anticancer sesquiterpene coumarin, 2 ) and (Z)‐7‐acetoxy‐methyl‐11‐methyl‐3‐methylene‐dodeca‐1,6,10‐triene (a new anticancer sesquiterpene, 3 ) were isolated and identified in our recent work. However, no quantitative analysis methods for any of them are yet available, nor for their simultaneous analysis. Objective – To develop an HPLC‐PAD method for simultaneous determination of 1 , 2 and 3 in hairy root cultures of A. annua. Methodology – HPLC operating conditions were optimised and the chromatographic separation was performed on a C18 column with a gradient acetonitrile : water as mobile phase. Results – Linear relationships within the range of investigated concentrations were observed for the three metabolites with their correlation coefficients greater than 0.997. The method was validated for repeatability (RSD <3.59%) and intra‐ and inter‐day precision (RSD <3.1%) with recovery between 94.8 and 107.6% and the RSD less than 3.40%. The method was successfully applied to the time‐course of accumulation of the bioactive compounds in genetically transformed root cultures of A. annua. Conclusion – The HPLC‐PAD method developed for the simultaneous determination of three bioactive metabolites 1 , 2 and 3 was simple, reproducible and sensitive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Introduction – Radix Saposhnikoviae is one of the most famous Chinese herbal medicines with many pharmacological activities towards inflammatory symptoms and antioxidation. Chromones are considered as one of the effective components. It is important to find a reasonable method to extract the chromones in S. divaricata. Objective – To develop an ultrasonic‐assisted extraction (UAE) to extract chromones in Radix Saposhnikoviae and to optimise extraction conditions. Methodology – Four chromones (prim‐O‐glucosylcimifugin, cimifugin, 5‐O‐methylvisammioside and sec‐O‐glucosylhamaudol) were extracted by the UAE method combined with response surface methodology (RSM). Box–Behnken design (BBD) was applied to evaluate the effects of three independent variables (ethanol concentration, extraction time and extraction temperature) on the chromones yield of Radix Saposhnikoviae. Results – Correlation analysis of the mathematical‐regression model indicated that a quadratic polynomial model could be employed to optimise the extraction of chromones by UAE method. The optimal conditions to obtain the highest chromones yield of Radix Saposhnikoviae were a solvent of 75% ethanol, an extraction time of 48 min and an extraction temperature of 67°C. Conclusion – Under these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance indicated a high goodness of model fit and the success of RSM method for optimising chromones extraction in Radix Saposhnikoviae. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Introduction – The medicinal plant Spilanthes acmella (L.) Murr. has demonstrated an array of biological activities that are generally attributed to the presence of spilanthol and other alkylamides. Recently this plant has been of interest due to its potential for the treatment and prevention of malaria. Objective – The aim of this study was to develop a liquid chromatography–electrospray ionisation–mass spectrometry (HPLC‐esiMS) method for rapid identification and quantification of the alkylamide spilanthol from S. acmella. Methodology – Hydroethanolic extracts were prepared from fresh S. acmella using different percentages of ethanol and were stored at ?80, ?20 and 25°C. Spilanthol was isolated and used as a standard for quantitative analysis. Results – Validation parameters for the HPLC‐esiMS analysis of spilanthol were as follows: repeatability, ≤6%; intermediate precision, ≤2%; range, 0.45–450 µm ; limit of detection, 0.27 µm ; and limit of quantification, 0.45 µm . Eight alkylamides in the S. acmella extract were identified based on MS‐MS fragmentation patterns, and NMR analysis confirmed the identity of the most abundant of these as spilanthol. Spilanthol was extracted most efficiently in solvents containing >75% ethanol, and was stable in ethanolic extracts stored at all three temperatures. Conclusion – These results demonstrate the effectiveness of HPLC‐esiMS for quantitative and qualitative analysis of spilanthol. We show that spilanthol is effectively extracted in ethanol, and is stable in ethanol extracts for over 6 months, even at room temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Vilanterol trifenatate is a novel chiral long‐acting β2‐agonist developed. Vilanterol combined with inhaled corticosteroids can treat COPD and asthma. A simple liquid chromatographic method is developed for the quantitative determination of R‐vilanterol and S‐vilanterol (impurity S). HPLC separation was achieved on Chiralpak ID (250 × 4.6 mm; particle size 5 μm) column using hexane‐ethanol‐ethanolamine (75:25:0.1, v/v/v) as mobile phase at a flow rate of 1.0 mL/min. The resolution is greater than 3.3. Ethanolamine in the mobile phase is vital to enhance chromatographic efficiency and resolution between the isomers. The method was validated with respect to accuracy, specificity, precision, LOD, LOQ, linearity, and robustness as ICH guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号