首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt-sensitive mutants of Synechocystis were obtained by random cartridge mutagenesis, and one mutant (mutant 4) was characterized in detail. The salt tolerance of mutant 4 was reduced to about 20% of that of the wild-type. This was caused by a defect in the biosynthetic pathway of the osmoprotective compound glucosylglycerol (GG). Salt-treated cells of mutant 4 accumulated the intermediate glucosylglycerol-phosphate (GG-P). Only low levels of phosphate-free GG were detected. The phosphorylated form of GG was not osmoprotective and seemed to be toxic. In vitro enzyme assays revealed that GG-P-phosphatase activity was completely absent in mutant 4, while GG-P-synthase remained unchanged. The integration site of the aphII cartridge in mutant 4 and the corresponding wild-type region was cloned and sequenced. Mutant 4 was complemented to salt resistance after transformation by the cloned wild-type region. The integration of the cartridge led to a deletion of about 1.1 kb of the chromosomal DNA. This affected two of the identified putative protein coding regions, orfII and stpA. The ORFII protein shows a high degree of similarity to the receiver domain of response regulator proteins. Related sequences were not found for StpA. We assume that in mutant 4, regulatory genes necessary for the process of salt adaptation in Synechocystis are impaired. Received: 12 January 1996 / Accepted: 28 May 1996  相似文献   

2.
Three mutants of the cyanobacterium Synechocystis sp. PCC 6803 unable to tolerate high salt concentrations were generated using random cartridge mutagenesis. Analysis of the phenotypes revealed that the salt sensitivity of one mutant (6803/143) is caused by a block in the synthesis of the osmoprotective substance glucosylglycerol, while in the two other mutants no physiological defect could be detected which was responsible for the loss of salt tolerance. Southern hybridization analyses and cloning of the integration sites of the resistance marker demonstrated that different genes are affected in each of the three mutants.Abbreviations aphII aminoglycoside phosphotransferase II - kb kilobasepairs - Km kanamycin - Kmr kanamycin-resistance  相似文献   

3.
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.  相似文献   

4.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   

5.
The unicellular cyanobacterium Microcystis furma tolerates salinity by accumulating the osmoprotective compound glucosylglycerol. After salt shock, the initial rate of glucosylglycerol synthesis is independent of the NaCl concentration used. In pulse chase experiments with NaH14CO3, synthesis of glucosylglycerol by salt-adapted cells was found to be rapid, whereas no sign of its breakdown was detected. Therefore, it is concluded that no turnover of glucosylglycerol takes place in salt-adapted cells. The specific capacity of the glucosylglycerol-forming enzyme system may be one reason for the salt resistance limit.Abbreviation GG glucosylglycerol Dedicated to Prof. Dr. Eike Libbert on the occasion of his 60th birthday  相似文献   

6.
A salt shock of 684mm NaCl reduced RNA and DNA synthesis to about 30% of the control level inSynechocystis. DNA synthesis recovered to the initial level within 4 h, while for recovery of RNA synthesis about 8 h were necessary. In cells completely adapted to different salt concentrations (from 171 to 1026mm NaCl), a continuous decrease in the RNA content with increasing salt concentrations up to 684mm NaCl was found, whereas the lowest DNA content was measured around 342mm NaCl, i.e., the salinity at which maximal growth occurred. With the uracil and thymidien incorporation technique, maxima in DNA and RNA synthesis were detected in control cells. Comparing these rates with nucleic acid synthesis rates calculated from the contents of DNA and RNA and the growth rates indicated that adaptation to 1026mm NaCl seemed to lead to an increased RNA turnover inSynechocystis. Analysis of protein synthesis with35S-methionine labeling showed alterations in salt-adapated cells ofSynechocystis. At least three proteins (20.5, 25.8, and 35.8 kDa) were synthesized with highest rates at salinities leading to maximal growth, the synthesis of nine proteins (12.5, 16.9, 19.2, 22.2, 24.7, 28.5, 30.5, 50.3, and 63.5 kDa) increased and that of several other proteins decreased with increasing salinity; but only three proteins (12.5, 22.2, and 30.5 kDa) accumulated under these conditions. The adaptation ofSynechocystis to enhanced salt concentrations led also to increased contents of glucosylglycerol, glycogen, and significant amounts of K+ as well as Na+ ions.  相似文献   

7.
A salt-sensitive mutant of Synechocystis sp. strain PCC 6803 defective in the synthesis of the compatible solute glucosylglycerol (GG) was used to search for the gene encoding GG-phosphate synthase (GGPS), the key enzyme in GG synthesis. Cloning and sequencing of the mutated region and the corresponding wild-type region revealed that a deletion of about 13 kb occurred in the genome of mutant 11. This deletion affected at least 10 open reading frames, among them regions coding for proteins showing similarities to trehalose (otsA homolog)- and glycerol-3-phosphate-synthesizing enzymes. After construction and characterization of mutants defective in these genes, it became obvious that an otsA homolog (sll1566) (T. Kaneko et al., DNA Res. 3:109–136, 1996) encodes GGPS, since only the mutant affected in sll1566 showed salt sensitivity combined with a complete absence of GG accumulation. Furthermore, the overexpression of sll1566 in Escherichia coli led to the appearance of GGPS activity in the heterologous host. The overexpressed protein did not show the salt dependence that is characteristic for the GGPS in crude protein extracts of Synechocystis.  相似文献   

8.
Sucrose and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) are very unusual osmoprotectants for Sinorhizobium meliloti because these compounds, unlike other bacterial osmoprotectants, do not accumulate as cytosolic osmolytes in salt-stressed S. meliloti cells. Here, we show that, in fact, sucrose and ectoine belong to a new family of nonaccumulated sinorhizobial osmoprotectants which also comprises the following six disaccharides: trehalose, maltose, cellobiose, gentiobiose, turanose, and palatinose. Also, several of these disaccharides were very effective exogenous osmoprotectants for strains of Rhizobium leguminosarum biovars phaseoli and trifolii. Sucrose and trehalose are synthesized as endogenous osmolytes in various bacteria, but the other five disaccharides had never been implicated before in osmoregulation in any organism. All of the disaccharides that acted as powerful osmoprotectants in S. meliloti and R. leguminosarum also acted as very effective competitors of [14C]sucrose uptake in salt-stressed cultures of these bacteria. Conversely, disaccharides that were not osmoprotective for S. meliloti and R. leguminosarum did not inhibit sucrose uptake in these bacteria. Hence, disaccharide osmoprotectants apparently shared the same uptake routes in these bacteria. Natural-abundance 13C nuclear magnetic resonance spectroscopy and quantification of cytosolic solutes demonstrated that the novel disaccharide osmoprotectants were not accumulated to osmotically significant levels in salt-stressed S. meliloti cells; rather, these compounds, like sucrose and ectoine, were catabolized during early exponential growth, and contributed indirectly to enhance the cytosolic levels of two endogenously synthesized osmolytes, glutamate and the dipeptide N-acetylglutaminylglutamine amide. The ecological implication of the use of these disaccharides as osmoprotectants is discussed.  相似文献   

9.
The rhizobacterium Stenotrophomonas rhizophila accumulates the compatible solutes glucosylglycerol (GG) and trehalose under salt stress conditions. The complete gene for the GG synthesis enzyme was cloned and sequenced. This enzyme from S. rhizophila represented a novel fusion protein composed of a putative C-terminal GG-phosphate synthase domain and an N-terminal putative GG-phosphate phosphatase domain, which was named GgpPS. A similar gene was cloned from Pseudomonas sp. strain OA146. The ggpPS gene was induced after a salt shock in S. rhizophila cells. After the salt-loaded cells reached stationary phase, the ggpPS mRNA content returned to the low level characteristic of the control cells, and GG was released into the medium. The complete ggpPS gene and a truncated version devoid of the phosphatase part were obtained as recombinant proteins. Enzyme activity tests revealed the expected abilities of the full-length protein to synthesize GG and the truncated GgpPS to synthesize GG-phosphate. However, dephosphorylation of GG-phosphate was detected only with the complete GgpPS protein. These enzyme activities were confirmed by complementation experiments using defined GG-defective mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Genes coding for proteins very similar to the newly identified fusion protein GgpPS for GG synthesis in S. rhizophila were found in genome sequences of related bacteria, where these genes are often linked to a gene coding for a transporter of the Mfs superfamily.  相似文献   

10.
Changes in intracellular composition after hyperosmotic shock were studied in the lysine-producing mutant Brevibacterium lactofermentum NRRL B-11470 and the wild-type Corynebacterium glutamicum ATCC 13032. Both strains accumulated betaine, proline, glutamic acid, glutamine and trehalose in response to stress. The accumulated amino acids were synthesized by the cells, while betaine and trehalose were taken up from the medium. The contribution of synthesized osmoregulators was highest in C. glutamicum. In a sucrose-limited continuous culture, the increased outer osmotic pressure was balanced within 15 min for C. glutamicum and somewhat later in B. lactofermentum. The rapid regulation was due to both accumulation of osmoregulators, and shrinkage of cell and cytoplasmic volume. Immediately after shock, glutamine and glutamic acid were the dominating osmolytes. During the adaptation process, glutamine was replaced by the better osmoprotectant proline. In betaine-enriched cultures, betaine accumulation increased at the expense of glutamic acid, glutamine and trehalose. The total intracellular concentration of osmolytes increased linearly with increasing stress for all stress factors.  相似文献   

11.
Sucrose and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) are very unusual osmoprotectants for Sinorhizobium meliloti because these compounds, unlike other bacterial osmoprotectants, do not accumulate as cytosolic osmolytes in salt-stressed S. meliloti cells. Here, we show that, in fact, sucrose and ectoine belong to a new family of nonaccumulated sinorhizobial osmoprotectants which also comprises the following six disaccharides: trehalose, maltose, cellobiose, gentiobiose, turanose, and palatinose. Also, several of these disaccharides were very effective exogenous osmoprotectants for strains of Rhizobium leguminosarum biovars phaseoli and trifolii. Sucrose and trehalose are synthesized as endogenous osmolytes in various bacteria, but the other five disaccharides had never been implicated before in osmoregulation in any organism. All of the disaccharides that acted as powerful osmoprotectants in S. meliloti and R. leguminosarum also acted as very effective competitors of [14C]sucrose uptake in salt-stressed cultures of these bacteria. Conversely, disaccharides that were not osmoprotective for S. meliloti and R. leguminosarum did not inhibit sucrose uptake in these bacteria. Hence, disaccharide osmoprotectants apparently shared the same uptake routes in these bacteria. Natural-abundance 13C nuclear magnetic resonance spectroscopy and quantification of cytosolic solutes demonstrated that the novel disaccharide osmoprotectants were not accumulated to osmotically significant levels in salt-stressed S. meliloti cells; rather, these compounds, like sucrose and ectoine, were catabolized during early exponential growth, and contributed indirectly to enhance the cytosolic levels of two endogenously synthesized osmolytes, glutamate and the dipeptide N-acetylglutaminylglutamine amide. The ecological implication of the use of these disaccharides as osmoprotectants is discussed.  相似文献   

12.
When cells of Synechocystis, adapted to 684 mmol/l NaCl, were exposed to hypoosmotic shock by reducing NaCl concentration to more than 250 mmol/l, significant amounts of organic material were liberated which could be increased by increasing shock strength. After maximal hypoosmotic shock (684 mmol/l 2 mmol/l NaCl) 40–50% of photosynthetically labelled organic material occurred in the surrounding medium. The main compound exudates was the osmoprotective compound glucosylglycerol. Minor exudates were amino acids, organic acids and carbohydrates. In contrast a hyperosmotic shock (2 mmol/l684 mmol/l NaCl) liberated only one fourth of the amount liberated by a hypoosmotic shock.  相似文献   

13.
We disrupted the mpgS encoding mannosyl-3-phosphoglycerate synthase (MpgS) of Thermus thermophilus strains HB27 and RQ-1, by homologous recombination, to assess the role of the compatible solute mannosylglycerate (MG) in osmoadaptation of the mutants, to examine their ability to grow in NaCl-containing medium and to identify the intracellular organic solutes. Strain HB27 accumulated only MG when grown in defined medium containing 2% NaCl; mutant HB27M9 did not grow in the same medium containing more than 1% NaCl. When trehalose or MG was added, the mutant was able to grow up to 2% of NaCl and accumulated trehalose or MG, respectively, plus amino acids. T. thermophilus RQ-1 grew in medium containing up to 5% NaCl, accumulated trehalose and lower amounts of MG. Mutant RQ-1M1 lost the ability to grow in medium containing more than 3% NaCl and accumulated trehalose and moderate levels of amino acids. Exogenous MG did not improve the ability of the organism to grow above 3% NaCl, but caused a decrease in the levels of amino acids. Our results show that MG serves as a compatible solute primarily during osmoadaptation at low levels of NaCl while trehalose is primarily involved in osmoadaptation during growth at higher NaCl levels.  相似文献   

14.
The compatible solute glucosylglycerol (GG) is widespread among cyanobacteria, but, until now, has been reported for only two species of heterotrophic bacteria. About 120 bacterial isolates from coastal regions of the Baltic Sea were screened by HPLC for their ability to synthesize GG. Positive isolates (26) were grouped by SDS-PAGE of whole-cell proteins and representative strains of each group were investigated by sequencing their 16S rRNA genes and phenotypic characterization. All GG-synthesizing isolates were shown to belong to the genus Pseudomonas (sensu stricto) and were assigned to 4 distinct groups, although none of the GG-synthesizing isolates could be unambiguously assigned to described species. The identity of GG was verified by 13C NMR analysis and enzymatic digestion with alpha- and beta-glucosidases. Besides GG, salt adapted cultures of the aquatic isolates accumulated the dipeptide N-acetylglutaminylglutamine amide (NAGGN) and glutamate. The accumulation of noncharged compatible solutes was also tested in previously identified pseudomonads isolated from the rhizosphere of oilseed rape and potato. The majority of these strains were fluorescent species of the genus Pseudomonas and accumulated trehalose and NAGGN when grown under salt stress conditions. However, rhizosphere isolates of Stenotrophomonas maltophilia synthesized GG and trehalose or only trehalose in a strain-dependent manner. These data indicate that the ability to synthesize GG is widely distributed among slightly or moderately halotolerant pseudomonads.  相似文献   

15.
Endocytosis in Saccharomyces cerevisiae is inhibited by concentrations of ethanol of 2 to 6% (vol/vol), which are lower than concentrations commonly present in its natural habitats. In spite of this inhibition, endocytosis takes place under enological conditions when high concentrations of ethanol are present. Therefore, it seems that yeast has developed some means to circumvent the inhibition. In this work we have investigated this possibility. We identified two stress conditions under which endocytosis was resistant to inhibition by ethanol: fermentation during nitrogen starvation and growth on nonfermentable substrates. Under these conditions, yeast accumulates stress protectors, primarily trehalose and Hsp104, a protein required for yeast to survive ethanol stress. We found the following. (i) The appearance of ethanol resistance was accompanied by trehalose accumulation. (ii) Mutant cells unable to synthesize trehalose also were unable to develop resistance. (iii) Mutant cells that accumulated trehalose during growth on sugars were resistant to ethanol even under this nonstressing condition. (iv) Mutant cells unable to synthesize Hsp104 were able to develop resistance. We conclude that trehalose is the major factor in the protection of endocytosis from ethanol. Our results suggest another important physiological role for trehalose in yeast.  相似文献   

16.
The fermentation process offers a wide variety of stressors for yeast, such as temperature, aging, and ethanol. To evaluate a possible beneficial effect of trehalose on ethanol production, we used mutant strains of Saccharomyces cerevisiae possessing different deficiencies in the metabolism of this disaccharide: in synthesis, tps1; in transport, agt1; and in degradation, ath1 and nth1. According to our results, the tps1 mutant, the only strain tested unable to synthesize trehalose, showed the lowest fermentation yield, indicating that this sugar is important to improve ethanol production. At the end of the first fermentation cycle, only the strains deficient in transport and degradation maintained a significant level of the initial trehalose. The agt1, ath1, and nth1 strains showed the highest survival rates and the highest proportions of non-petites. Accumulation of petites during fermentation has been correlated to low ethanol production. When recycled back for a subsequent fermentation, those mutant strains produced the highest ethanol yields, suggesting that trehalose is required for improving fermentative capacity and longevity of yeasts, as well as their ability to withstand stressful industrial conditions. Finally, according to our results, the mechanism by which trehalose improves ethanol production seems to involve mainly protection against protein oxidation.  相似文献   

17.
Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation. By using a mutant unable to synthesize trehalose and glycogen, we have investigated this requirement of trehalose and glycogen under carbon-limited conditions in continuous cultures. Trehalose and glycogen levels increased with decreasing growth rates in the wild-type strain, whereas no trehalose or glycogen was detected in the mutant. However, the mutant was still able to grow and divide at low growth rates with doubling times similar to those for the wild-type strain, indicating that trehalose and glycogen are not essential for cell cycle progression. Nevertheless, upon a slight increase of extracellular carbohydrates, the wild-type strain degraded its reserve carbohydrates and was able to enter a cell division cycle faster than the mutant. In addition, wild-type cells survived much longer than the mutant cells when extracellular carbon was exhausted. Thus, trehalose and glycogen have a dual role under these conditions, serving as storage factors during carbon starvation and providing quickly a higher carbon and ATP flux when conditions improve. Interestingly, the CO2 production rate and hence the ATP flux were higher in the mutant than in the wild-type strain at low growth rates. The possibility that the mutant strain requires this steady higher glycolytic flux at low growth rates for passage through Start is discussed.  相似文献   

18.
Glucosylglycerol-phosphate synthase (GGPS), the key enzyme of the glucosylglycerol biosynthesis in salt-stressed cells of Synechocystis, was biochemically analyzed in crude extracts, after partial purification by FPLC and after overexpression of the gene ggpS in Escherichia coli and purification to homogenity of the recombinant protein, respectively. These GGPS preparations behaved similarly with regard to temperature stability, pH optimum, Mg2+ dependence, inhibition by phosphates, and Km values, but differed in their dependence on NaCl concentration: crude enzyme needed activation by addition of NaCl, whereas both partially-purified and recombinant GGPS showed high activities independent of the NaCl concentration. Received: 19 January 2001 / Accepted: 21 February 2001  相似文献   

19.
The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose 6‐phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature or increase in glucose levels (> 4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose 6‐phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence.  相似文献   

20.
The biogenesis of chlorophyll-binding proteins under iron stress has been investigated in vivo in a chlN deletion mutant of Synechocystis sp. PCC 6803. The chlN gene encodes one subunit of the light-independent protochlorophyllide reductase. The mutant is unable to synthesize chlorophyll in darkness, causing chlorophyll biosynthesis to become light dependent. When the mutant was propagated in darkness, essentially no chlorophyll and photosystems were detected. Upon return of the chlN deletion mutant to light, 77 K fluorescence emission spectra and oxygen evolution of greening cells under iron-sufficient or-deficient conditions were measured. The gradual blue shift of the photosystem I (PS I) peak upon greening under iron stress suggested the structural alteration of newly synthesized PS I. Furthermore, the rate of biogenesis of PS II was delayed under iron stress, which might be due to the presence of IsiA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号