首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
P A Raj  P Balaram 《Biopolymers》1985,24(7):1131-1146
The aggregation behavior of the chemotactic peptide analogs, Formyl-Met-Leu-Phe-OMe ( 1 ) and Formyl-Met-Aib-Phe-OMe ( 2 ), has been studied in chloroform and dimethylsulfoxide over the concentration range of 0.2–110 mM by 1H-nmr spectroscopy. Both peptides associate in CDCl3 at concentrations ≥ 2 mM, while there is no evidence for aggregation in (CD3)2SO. Analog 1 adopts an extended conformation in both solvents favoring association to form β-sheet structures. A folded, γ-turn conformation involving a 3 → 1 hydrogen bond between Met CO and Phe NH is supported by 1H-, 13C-nmr, and ir studies of analog 2 . The influence of backbone conformation on the ease of peptide aggregation is demonstrated by ir studies in CHCl3 and CD studies in dioxane.  相似文献   

2.
A new synthetic route to (E)-beta-phenyl-alpha,beta-dehydroalanine (delta(E)Phe)-containing peptide was presented via photochemical isomerization of the corresponding (Z)-beta-phenyl-alpha,beta-dehydroalanine (delta(Z)Phe)-containing peptide. By applying this method to Boc-Ala-delta(Z)Phe-Val-OMe (Z-I: Boc, t-butoxycarbonyl; OMe, methoxy), Boc-Ala-delta(E)Phe-Val-OMe (E-I) was obtained. The identification of peptide E-I was evidenced by 1H-nmr, 13C-nmr, and uv absorption spectroscopy, elemental analysis, and hydrogenation. The conformation of peptide E-I in CDCl3 was investigated by 1H-nmr spectroscopy (solvent dependence of NH chemical shift and difference nuclear Overhauser effect). Interestingly, peptide E-I differed from peptide Z-I in the hydrogen-bonding mode. Namely, for peptide Z-I, only Val NH participates in intramolecular hydrogen bonding, which leads to a type II beta-turn conformation supported by hydrogen bonding between CO(Boc) and NH(Val). On the other hand, for peptide E-I, two NHs, delta(E)Phe NH and Val NH, participate in intramolecular hydrogen bonding. In both peptides, a remarkable NOE (approximately 11-13%) was observed for Ala C(alpha) H-deltaPhe NH pair. Based on the nmr data and conformational energy calculation, it should be concluded that peptide E-I takes two consecutive gamma-turn conformations supported by hydrogen bonding between CO(Boc) and NH(delta(E)Phe), and between CO(Ala) and NH(Val) as its plausible conformation.  相似文献   

3.
Ganesh S  Jayakumar R 《Biopolymers》2003,70(3):336-345
Self-assembly of two tripeptide derivatives containing three nonpolar isoleucine moieties and polar oxyethylene groups are studied in methanol. Peptide A [CH3(OCH2CH2)3OCH2CO(Ile)3OCH3] and peptide B [CH3(OCH2CH2)3OCH2CO(Ile)3NH (CH2CH2O)3CH3] take a mixture of unordered and helical conformation at low concentration (8.5 x 10(-4) M). However, at high concentration (2 x 10(-3) M), both the peptide showed significant increase in the helical conformation. An interesting conformational transition of peptides A and B at various methanol contents was observed in the solvated films of these compounds by spectroscopic methods like the far-uv circular dichroism and Fourier transform infrared (FT-IR) techniques. Peptide B, which contains more polar oxyethylene groups than A, showed a highly cooperative conformational transition when the methanol content was decreased. This transition was characterized by a large increase of beta-sheet, retaining a alpha-helical contribution. Peptide A showed a conformational transition resulting in a beta-sheet in the aggregated state. From the CD spectra, the ratio in the ellipticity indicates that peptide B forms twisted antiparallel beta-sheet conformation, whereas peptide A takes a parallel beta-sheet conformation. The results obtained in this work indicates the role of polar derivatization on the conformational preference of peptides having similar sequence.  相似文献   

4.
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.  相似文献   

5.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

6.
The cyclododecapeptide, (Ala1-Pro2-Gly3-Val4-Gly5-Val6)2, was synthesized and its secondary structure was evaluated from extensive studies in dimethyl sulphoxide, trifluoroethanol and water using NMR methods. A selective decoupling technique in 13C-NMR has been utilized in order to assign the C=O carbon resonances. Temperature dependence of the peptide NH protons and the solvent perturbation of the peptide NH and C=O resonances show the occurrence in all solvents of a beta-turn (a 10-membered H-bond between the Val4 NH and Ala1 C=O) and a gamma-turn, an 11-membered H-bond between the Gly3 NH and the Gly5 C=O; and a possible 14-membered H-bond between the Ala1 NH and the Val4 C=O in dimethyl sulphoxide and trifluoroethanol. These secondary structural features are compared with the linear polyhexapeptide and found the the beta-turn and the gamma-turn are the common conformational features of these peptide systems.  相似文献   

7.
To investigate the role of peptide backbone conformation on the biological activity of chemotactic peptides, we synthesized a unique analog of N-formyl-Met-Leu-Phe-OH incorporating the C alpha,alpha disubstituted residue, dipropylglycine (Dpg) in place of Leu. The conformation of the stereochemically constrained Dpg analog was examined in the crystalline state by x-ray diffraction and in solution using NMR, IR, and CD methods. The secretagogue activity of the peptide on human neutrophils was determined and compared with that of a stereochemically constrained, folded type II beta-turn analog incorporating 1-aminocyclohexanecarboxylic acid (Ac6c) at position 2 (f-Met-Ac6c-Phe-OMe), the parent peptide (f-Met-Leu-Phe-OH) and its methyl ester derivative (f-Met-Leu-Phe-OMe). In the solid state, the Dpg analog adopts an extended beta-sheet-like structure with an intramolecular hydrogen bond between the NH and CO groups of the Dpg residue, thereby forming a fully extended (C5) conformation at position 2. The phi and psi values for Met and Phe residues are significantly lower than the values expected for an ideal antiparallel beta conformation causing a twist in the extended backbone both at the N and C termini. Nuclear magnetic resonance studies suggest the presence of a significant population of the peptide molecules in an extended antiparallel beta conformation and the involvement of Dpg NH in a C5 intramolecular hydrogen bond in solutions of deuterated chloroform and deuterated dimethyl sulfoxide. IR studies provide evidence for the presence of an intramolecular hydrogen bond in the molecule and the antiparallel extended conformation in chloroform solution. CD spectra in methanol, trifluoroethanol, and trimethyl phosphate indicate that the Dpg peptide shows slight conformational flexibility, whereas the folded Ac6c analog is quite rigid. The extended Dpg peptide consistently shows the highest activity in human peripheral blood neutrophils, being approximately 8 and 16 times more active than the parent peptide and the folded Ac6c analog, respectively. However, the finding that all four peptides have ED50 (the molar concentration of peptide to induce half-maximal enzyme release) values in the 10(-8)-10(-9) M range suggests that an induced fit mechanism may indeed be important in this ligand-receptor interaction. Moreover, it is also possible that alterations in the backbone conformation at the tripeptide level may not significantly alter the side chain topography and/or the accessibility of key functional groups important for interaction with the receptor.  相似文献   

8.
An octapeptide containing a central -Aib-Gly- segment capable of adopting beta-turn conformations compatible with both hairpin (beta(II') or beta(I')) and helical (beta(I)) structures has been designed. The effect of solvent on the conformation of the peptide Boc-Leu-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VIII; Boc: t-butyloxycarbonyl; OMe: methyl ester) has been investigated by NMR and CD spectroscopy. Peptide VIII adopts a well-defined beta-hairpin conformation in solvents capable of hydrogen bonding like (CD(3))(2)SO and CD(3)OH. In solvents that have a lower tendency to interact with backbone peptide groups, like CDCl(3) and CD(3)CN, helical conformations predominate. Nuclear Overhauser effects between the backbone protons and solvent shielding of NH groups involved in cross-strand hydrogen bonding, backbone chemical shifts, and vicinal coupling constants provide further support for the conformational assignments in different solvents. Truncated peptides Boc-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VII), Boc-Val-Val-Aib-Gly-Leu-Val-OMe (VI), and Boc-Val-Aib-Gly-Leu-OMe (IV) were studied in CDCl(3) and (CD(3))(2)SO by 500 MHz (1)H-NMR spectroscopy. Peptides IV and VI show no evidence for hairpin conformation in both the solvents. The three truncated peptides show a well-defined helical conformation in CDCl(3). In (CD(3))(2)SO, peptide VII adopts a beta-hairpin conformation. The results establish that peptides may be designed, which are poised to undergo a dramatic conformational transition.  相似文献   

9.
M Iqbal  P Balaram 《Biochemistry》1981,20(25):7278-7284
270-MHz 1H NMR studies of the 11-21 suzukacillin fragment Boc-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-G) and its analogue Boc-Ala-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-A) have been carried out in CDCl3 and (CD3)2SO. The NH chemical shifts and their temperature coefficients have been measured as a function of peptide concentration in both solvents. It is established that replacement of Gln by Ala is without effect on backbone conformation. Both peptides adopt highly folded 310 helical conformations stabilized by seven intramolecular 4 leads to hydrogen bonds. Nonlinear temperature dependences are demonstrated for free NH groups in the Gln(1) peptide. Aggregation is mediated by intermolecular hydrogen bonds formed by solvent-exposed NH groups. A major role for the Gln side chain in peptide association is suggested by differences in the NMR behavior of the Gln(1) and Ala(1) peptides. For the Gln(1) peptide in CDCl3, the carboxamide side chain carbonyl group forms an intramolecular hydrogen bond to the peptide backbone, while the trans side chain NH shows evidence for intermolecular interactions. In (CD3)2SO, the cis carboxamide NH is involved in intermolecular hydrogen bonding. The possible role of the central Gln residue in stabilizing aggregates of peptide channel formers is discussed, and a model for hexameric association is postulated.  相似文献   

10.
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A bicyclic undecapeptide of sequence cyclo-(Ala(1)-Pro(2)-Asp(3)-Glu(4)-Lys(5)-Ala(6)-Pro(7)-Asp(8)-Ser(9) -Glu(10))-cyclo-(10gamma --> 5varepsilon)-Gly(11), designed to mimic the calcium coordination site I of Calmodulin, has been synthesized and its conformation and calcium binding properties have been investigated by means of CD and nmr spectroscopy. The nmr analysis of the free peptide, carried out in DMSO and in TFE/H(2)O at different pH values, shows the presence in solution of one stable conformer, exhibiting trans configuration around both Proline residues. The nmr results in both solvents suggest for the molecule a rectangular shape constituted by two antiparallel beta-strands connected by two beta-turns. Interproton distances, evaluated by NOE contacts, have been used to obtain feasible models by means of Restrained Molecular Dynamic (RMD). The average models from RMD calculations, for both solvents, exhibit good analogies with Calmodulin site I. The model system, when compared with the reference system (Asp(20)-Glu(31) segment in CaM), shows similar dimensions and an effective superimposition of the respective sequence segments Ala(1)-Glu(4) and Thr(28)-Glu(31). The remaining segments of the model peptide exhibit a bending that is intermediate between that of the free and Ca(2+)-coordinated site I. CD spectra, recorded in TFE solutions, point to a 1:1 stoichiometry for the Ca(2+)-peptide complex, with an association constant of at least 1 x 10(5) M(-1).  相似文献   

12.
The crystallographic investigation of the retro-inverso peptide Bz-S-gAla-R-mAla-NHPh reveals an extended backbone conformation where the NH groups of the gem-diamino alkyl moiety and the CO groups of the malonyl residue face side by side. This extended conformation, presenting all carbonyls on opposite sides of the NH groups, is stabilized by interstrand H-bonds running in a single direction of the parallel beta-sheets that characterize the crystal packing. These sheets differ from the beta-sheets formed by native amino acids only. (1)H-NMR nuclear Overhauser effect spectroscopy (NOESY) experiments suggest that a conformation similar to that found in the crystal also prevails in dimethylsulfoxide solution. Previous potential energy calculations of gem-diamino alkyl (g) and malonyl (m) Ala residues predicted that extended forms were less stable than the helical ones because of strong electrostatic repulsions between the parallel polar groups. Similar arguments were invoked to give more weight to helical forms of the retro-peptide units in the proposal of packing models of some nylons in their crystalline polar regions. The present findings show that both g and m Ala residues can experience the extended conformation in the beta-sheet aggregation. The energy increase occurring in one strand, due to the parallel orientation of consecutive peptide dipoles, is more than compensated by favorable cooperative interactions among head-to-tail aligned peptide dipoles of facing strands, resulting in the formation of two C==O...H==N H-bonds per residue.  相似文献   

13.
The conformational studies of peptide derivatives A and B in a gel state were studied by using circular dichroism (CD), Fourier transformed infrared (FTIR), and fluorescence spectroscopic techniques. Birefringence and electron microscopic studies were carried out to characterize the morphological aspects of the fibrils in the gel. The FTIR spectra of the peptides show the absence of free NH in the gel state, implying that the intermolecular hydrogen-bond formation is the driving force for the aggregation. The CD spectrum of the peptide gels shows the presence of antiparallel and parallel beta-sheet conformation for peptide derivatives A and B, respectively. Electron microscopic studies (EM) of the peptide derivatives A and B reveal that peptide A formed rigid, rod-like structures without cross-linking and peptide B formed loose fibrils organized into highly noncovalently cross-linked mesh-like structural aggregates. Peptide A was much more soluble in alcoholic solvents than peptide B, and no birefringence was observed with Congo red (CR) staining in the temperature range of 0-80 degrees C. The spectroscopic studies indicate that peptide B consists of domains having a significant amount of beta-sheet structure and exhibiting golden yellow birefringence between 53 and 56 degrees C when stained with Congo red. On the other hand, peptide A gives no evidence of birefringence under polarized light. Fluorescence probe binding studies with pyrene in gel state with peptides A and B indicates the polarity in the interior of the aggregates. The data presented in the present work indicate that peptide B forms fibrils, which is similar to amyloid aggregates that are present in biological systems.  相似文献   

14.
Ascidiacyclamide (ASC), cyclo(-Ile1-Oxz2-d-Val3-Thz4-)2 (Oxz=oxazoline and Thz=thiazole) has a C2-symmetric sequence, and the relationships between its conformation and symmetry have been studied. In a previous study, we performed asymmetric modifications in which an Ile residue was replaced by Gly, Leu or Phe to disturb the symmetry [Doi et al. (1999) Biopolymers49, 459-469]. In this study, the modifications were extended. The Ile1 residue was replaced by Gly, Ala, aminoisobutyric acid (Aib), Val, Leu, Phe or d-Ile, and the d-Val3 residue was replaced by Val. The structures of these analogs were analyzed by X-ray diffraction, 1H NMR and CD techniques. X-Ray diffraction analyses revealed that the [Ala1], [Aib1] and [Phe1]ASC analogs are folded, whereas [Val1]ASC has a square form. These structures are the first examples of folded structures for ASC analogs in the crystal state and are similar to the previously reported structures of [Gly1] and [Phe1]ASC in solution. The resonances of amide NH and Thz CH protons linearly shift with temperature changes; in particular, those of [Aib1], [d-Ile1] and [Val3]ASCs exhibited a large temperature dependence. DMSO titration caused nonlinear shifts of proton resonances for all analogs and largely affected [d-Ile1] and [Val3]ASCs. A similar tendency was observed upon the addition of acetone to peptide solutions. Regarding peptide concentration changes, amide NH and Thz CH protons of [Gly1]ASC showed a relatively large dependence. CD spectra of these analogs indicated approximately two patterns in MeCN solution, which were related to the crystal structures. However, all spectra showed a similar positive Cotton effect in TFE solution, except that of [Val3]ASC. In the cytotoxicity test using P388 cells, [Val1]ASC exhibited the strongest activity, whereas the epimers of ASC ([d-Ile1] and [Val3]ASCs), showed fairly moderate activities.  相似文献   

15.
The crystal structures of the peptides, Boc-Leu-Trp-Val-OMe (1), Ac-Leu-Trp-Val-OMe (2a and 2b), Boc-Leu-Phe-Val-OMe (3), Ac-Leu-Phe-Val-OMe (4), and Boc-Ala-Aib-Leu-Trp-Val-OMe (5) have been determined by X-ray diffraction in order to explore the nature of interactions between aromatic rings, specifically the indole side chain of Trp residues. Peptide 1 adopts a type I beta-turn conformation stabilized by an intramolecular 4-->1 hydrogen bond. Molecules of 1 pack into helical columns stabilized by two intermolecular hydrogen bonds, Leu(1)NH...O(2)Trp(2) and IndoleNH...O(1)Leu(1). The superhelical columns further pack into the tetragonal space group P4(3) by means of a continuous network of indole-indole interactions. Peptide 2 crystallizes in two polymorphic forms, P2(1) (2a) and P2(1)2(1)2(1) (2b). In both forms, the peptide backbone is extended, with antiparallel beta-sheet association being observed in crystals. Extended strand conformations and antiparallel beta-sheet formation are also observed in the Phe-containing analogs, Boc-Leu-Phe-Val-OMe (3) and Ac-Leu-Phe-Val-OMe (4). Peptide 5 forms a short stretch of 3(10)-helix. Analysis of aromatic-aromatic and aromatic-amide interactions in the structures of peptides, 1, 2a, 2b are reported along with the examples of 14 Trp-containing peptides from the Cambridge Crystallographic Database. The results suggest that there is no dramatic preference for a preferred orientation of two proximal indole rings. In Trp-containing peptides specific orientations of the indole ring, with respect to the preceding and succeeding peptide units, appear to be preferred in beta-turns and extended structures.  相似文献   

16.
To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.  相似文献   

17.
The crystals of Boc-Tyr-Gly-Gly-Phe psi[CSNH]Leu-OBzl monohydrate (C40H51N5O8S.H2O), a monothionated Leu-enkephalin analogue, were obtained with space group P2(1), a = 12.616(3), b = 9.347(2), c = 18.548(5) A, beta = 96.31(4) degrees. The structure was elucidated by X-ray diffraction analysis, and refined to the R value of 0.091 for the observed 3294 reflections. Two antiparallel molecules related by a pseudo twofold symmetry were stabilized to each other by four intermolecular hydrogen bonds. The molecular conformation was bent at the Phe residue, and the extended moiety of the Tyr-Gly-Gly fragment was almost perpendicular to that of the Phe-Leu residues. Consequently the molecule, as a whole, formed an L-shape conformation with a slightly left-handed helicity.  相似文献   

18.
The depsipeptide DNA-intercalating antibiotic luzopeptin was studied in solution by n.m.r. methods. Two-dimensional 1H double-quantum-filtered correlation spectroscopy (DQF-COSY) and nuclear-Overhauser-effect spectroscopy (NOESY) confirm the primary structure and twofold symmetry of luzopeptin and provide details of its three-dimensional conformation in solution. Trans-annular hydrogen bonds between the glycine NH groups and carbonyl oxygen atoms have been identified in the crystalline state [Arnold & Clardy (1981) J. Am. Chem. Soc. 103, 1243-1244], and are important in maintaining an antiparallel beta-sheet conformation. The n.m.r. data indicate that the glycine NH protons are appreciably shielded from the solvent molecules, which suggests that these hydrogen bonds are maintained in solution. The orientation of the quinoline chromophores is defined by two-dimensional NOE cross-peaks that position the N-methyl group of the L-beta-hydroxyvaline residue close in space to both the quinoline H-8 and serine NH proton. This pattern of NOEs is in accord both with the chromophore configuration found in the crystal and one where the quinoline rings are aligned in a parallel manner at right-angles to the depsipeptide ring. The n.m.r. data are consistent with a hydrogen bond between the quinoline hydroxy groups and the quinoline carbonyl oxygen atoms. The pyridazine acetylmethyl groups give NOEs to the C(alpha)H groups of the beta-hydroxy-N-methylvaline residues, showing that the acetyl groups, for at least some of the time, stretch over the depsipeptide ring, occluding one face of the molecule. Both of the latter features are also found in the crystal structure. Resonances in the 13C-n.m.r. spectrum of luzopeptin have been assigned by transferring 1H assignments to their covalently bonded carbon atoms via a heteronuclear shift-correlation experiment (HETCOR). The measurement of spin-lattice relaxation times and 1H-13C NOEs at specific sites in the molecule has led us to conclude that segmental motions within the depsipeptide ring are restricted and that the 13C relaxation data for luzopeptin's protonated carbon atoms are adequately described by isotropic tumbling in solution. Furthermore, relaxation data for the carbon atoms of the quinoline chromophores show that these rings exhibit similar motion to the depsipeptide ring and are not rotating rapidly with respect to it. Taken together all the data imply that luzopeptin is fairly rigid in solution, on the time scale of molecular tumbling, and has, or can readily attain, a staple-like structure suitable for bisintercalation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Aspartic acid protease model peptides Z-Phe-Asp(COOH)-Thr-Gly-Ser-Ala-NHCy (1) and AdCO-Asp(COOH)-Val-Gly-NHBzl (3), and their aspartate anions (NEt4)[Z-Phe-Asp(COO-)-Thr-Gly-Ser-Ala-NHCy] (2) and (NEt4)[AdCO-Asp(COO-)-Val-Gly-NHBzl] (4), having an invariant primary sequence of the Asp-X(Thr,Ser)-Gly fragment, were synthesized and characterized by 1H-NMR, CD, and infrared (IR) spectroscopies. NMR structure analyses indicate that the Asp O(delta) atoms of the aspartate peptide 2 are intramolecularly hydrogen-bonded with Gly, Ser, Ala NH, and Ser OH, supporting the rigid beta-turn-like conformation in acetonitrile solution. The tripeptide in the aspartic acid 3 forms an inverse gamma-turn structure, which is converted to a beta-turn-like conformation because of the formation of the intramolecular NH . . . O- hydrogen bonds with the Asp O(delta) in 4. Such a conformational change is not detected between dipeptides AdCO-Asp(COOH)-Va-NHAd (5) and (NEt4)[AdCO-Asp(COO-)-Val-NHAd] (6). The pK(a) value of side-chain carboxylic acid (5.0) for 3 exhibits a lower shift (0.3 unit) from that of 5 in aqueous polyethyleneglycol lauryl ether micellar solution. NMR structure analyses for 3 in an aqueous micellar solution indicate that the preorganized turn structure, which readily forms the NH . . . O- hydrogen bonds, lowers the pK(a) value and that resulting hydrogen bonds stabilize the rigid conformation in the aspartate anion state. We found that the formation of the NH . . . O- hydrogen bonds involved in the hairpin turn is correlated with the protonation and deprotonation state of the Asp side chain in the conserved amino acid fragments.  相似文献   

20.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (delta Z-Phe) at position 2 or 3, Boc-Leu-Ala-delta Z-Phe-Leu-OMe (1) and Boc-Leu-delta Z-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (Ci alpha H----Ni+1H and NiH----Ni+1H) between backbone protons. The simultaneous observation of "mutually exclusive" n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-delta Z-Phe- Type II beta-turn structure and a second species with delta Z-Phe adopting a partially extended conformation with psi values of +/- 100 degrees to +/- 150 degrees. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive beta-turn structure for the -Leu-delta Z-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号