首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient and highly specific continuous spectrophotometric assay for sodium-potassium adenosine triphosphate activity utilizing the rapidly hydrolyzed and high-affinity chromophoric substrate beta-(2-furyl)acryloyl phosphate (FAP) is described. The Na/K-ATPase-catalyzed hydrolysis of FAP is faster than that for ATP under all ionic conditions. The rate is neither inhibited nor activated by Na+; it is dependent on [K+] and on [Mg2+]. The hydrolysis of FAP to furylacrylate is accompanied by a large shift in the UV absorbance maximum. The spectrum of FAP, but not furylacrylate, is sensitive to noncovalent ligation with Mg2+, a happenstance which permits the identification of Mg2+FAP, and consequently allows for a probe of the role of Mg2+ in the catalysis. Mg2+ binding to the active site is essential for catalysis. MgFAP is more tightly bound to the site than is FAP2-, but the complex is not obligatory for catalysis. The formation of a phosphoryl-enzyme intermediate is not evident in the reaction of FAP with the enzyme. Transient kinetic experiments, utilizing an excess of MgFAP, demonstrate a unique steady-state rate-limiting production of furylacrylate. These results indicate that the pathway demonstrated with ATP is not appropriate to the FAPase mechanism. The results suggest that acyl phosphates are good "phosphatase" substrates either because they are analogues of the phosphatase-specific phosphoryl-enzyme or because they react exclusively with the isomerized "E2" form of the enzyme.  相似文献   

2.
Using inside-out vesicles of human red cell membranes, the side-specific effects of Na+ on phosphorylation of (Na,K)-ATPase have been studied using low concentrations of [gamma-32P]ATP (less than or equal to 0.1 microM). Phosphorylation is stimulated by Na+ at the cytoplasmic membrane surface (extravesicular Na+) alone and not by Na+ at the external surface (intravesicular Na+). At 37 degrees C, external Na+ (less than or equal to 10 mM) does, however, increase the steady state level (approximately 2 1/2-fold) of phosphoenzyme above that observed with cytoplasmic Na+ alone; hydrolysis is increased to only a small extent. Little stimulation by external Na+ is observed at 0 degrees C. As Na+ at the cytoplasmic side is decreased to very low levels (less than or equal to 0.2 mM) several kinetic changes are observed: (i) the apparent turnover of phosphoenzyme (ratio Na+-ATP-ase/phosphoenzyme level) is markedly increased (approximately 3-fold, (ii) Rbext sensitivity (inhibition of (Na)-ATPase at low ATP levels) is reduced, and (iii) the ratio of Na+ ions transported per molecule of ATP hydrolyzed is decreased. These results are compatible with a reaction pathway involving a transition from one form of phosphoenzyme, E1-P, to another, E2-P of which the hydrolysis is decreased by moderate levels of external Na+. It is suggested also that an alternate reaction pathway for Na+-ATPase occurs at very low cytoplasmic Na+, one via hydrolysis of E1-P and not associated with Na+ translocation.  相似文献   

3.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

4.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

5.
Kinetic regularities of the reaction of Ca2+-independent Mg2+-dependent enzymatic hydrolysis of ATP catalyzed by the so-called "basal" Mg2+-ATPase localized in the plasmatic membrane of the uterus smooth-muscle cells have been studied using the methods of kinetic analysis performed under the equilibrium conditions. The analysis was based on the study of the concentration dependence of initial velocity of nucleoside triphosphate hydrolysis in EGTA-containing medium under the change of general concentrations of ATP [ATP]o and Mg2+[Mg2+]o in conditions of their equimolar ratio ([ATP]o/ [Mg2+]o)= 1; here the ratio between the concentrations of free reagents ([ATP4-]o/[Mg2+]o) was equal to 1.25. The obtained concentration dependence was interpreted in terms of two practically possible alternative mechanisms of Mg2+-dependent ATP-hydrolase enzymatic reaction. Mechanism I. Two separate independent centres of Mg ions and ATP binding by the enzymatic protein are supposed to exist, while Mg2+-dependent ATP-hydrolase enzymatic reaction proceeds independent of the equilibrium reaction of Mg ions chelatization of muscleside triphosphate. Mechanism II. The existence of the only centre of the chelate complex Mg2+ATP2- binding is postulated on the enzymatic protein; this process is also realized independent of the binding of Mg2+ and ATP-hydralase reaction catalized by it.  相似文献   

6.
We investigated the reaction mechanism for GTP-dependent Ca2+ uptake by canine cardiac microsomes enriched in fragmented sarcoplasmic reticulum (SR), because previous studies reported that GTP utilization in cardiac SR occurs via a pathway very different from that for ATP utilization (for a review, see "Entman, M.L., Bick, R., Chu, A., Van Winkle, W.B., & Tate, C.A. (1986) J. Mol. Cell. Cardiol. 18, 781-792"). In cardiac microsomes, we detected slow but distinct oxalate-dependent Ca2+ accumulation, which reached 550 nmol/mg protein in 10 min, and similarly slow Ca2+-dependent GTP hydrolysis. In 50 microM [gamma-32P]-GTP at 0 degrees C, we detected Ca2+-dependent formation of phosphoprotein whose level in the steady state was about a half of the maximum obtained with [gamma-32P]ATP. Kinetic properties of the phosphoprotein, its molecular weight and its chemical stability after the acid treatment are consistent with the conclusion that the phosphoprotein is an acylphosphate intermediate for Ca2+-dependent GTP hydrolysis catalyzed by the Ca2+-pump ATPase. Analysis of the kinetics of the turnover of phosphoprotein revealed that slow GTP hydrolysis is due to slow phosphoprotein formation; at 25 degrees C, the latter arises mainly from slow binding of Ca2+ to the dephosphorylated enzyme. These results indicate that, contrary to the previous data, the reaction pathway for GTP-dependent Ca2+ transport in cardiac SR is basically the same as that for ATP-dependent transport.  相似文献   

7.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

8.
The ATP hydrolysis dependent Na+-Na+ exchange of reconstituted shark (Na+ + K+)-ATPase is electrogenic with a transport stoichiometry as for the Na+-K+ exchange, suggesting that translocation of extracellular Na+ is taking place via the same route as extracellular K+. The preparation thus offers an opportunity to compare the sided action of Na+ and K+ on the affinity for ATP in a reaction in which the intermediary steps in the overall reaction seems to be the same without and with K+. With Na+ but no K+ on the two sides of the enzyme, the ATP-activation curve is hyperbolic and the affinity for ATP is high. Extracellular K+ in concentrations of 50 microM (the lowest tested) and up gives biphasic ATP activation curves, with both a high- and a low-affinity component for ATP. Cytoplasmic K+ also gives biphasic ATP-activation curves, however, only when the K+ concentration is 50 mM or higher (Na+ + K+ = 130 mM). The different ATP-activation curves are explained from the Albers-Post scheme, in which there is an ATP-dependent and an ATP-independent deocclusion of E2(Na2+) and E2(K2+), respectively, and in which the dephosphorylation of E2-P is rate limiting in the presence of Na+ (but no K+) extracellular, whereas in the presence of extracellular K+ it is the deocclusion of E2(K2+) which is rate limiting.  相似文献   

9.
Treatment of red cell membranes with pure phospholipase C inactivates (Na+ + K+)-ATPase activity and Na+-dependent phosphorylation but increases K+-dependent phosphatase activity. When phospholipase A2 replaces phospholipase C, all activities are lost. Activation of K+-dependent phosphatase by treatment with phospholipase C is caused by an increase in the maximum rate of hydrolysis of p-nitrophenylphosphate and in the maximum activating effect of K+, the apparent affinities for substrate and cofactors being little affected. After phospholipase C treatment K+-dependent phosphatase is no longer sensitive to ouabain but becomes more sensitive to N-ethylmaleimide. In treated membranes Na+ partially replaces K+ as an activator of the phosphatase. Although ATP still inhibits phosphatase activity, neither ATP, nor ATP+Na+ are able to modify the apparent affinity for K+ of K+-dependent phosphatase in these membranes.  相似文献   

10.
1. The protein fluorescence intensity of (Na+ + K+)-ATPase is enhanced following binding of K+ at low concentrations. The properties of the response suggest that one or a few tryptophan residues are affected by a conformational transition between the K-bound form E2 . (K) and a Na-bound form E1 . Na. 2. The rate of the conformational transition E2 . (K) leads to E . Na has been measured with a stopped-flow fluorimeter by exploiting the difference in fluorescence of the two states. In the absence of ATP the rate is very slow, but it is greatly accelerated by binding of ATP to a low affinity site. 3. Transient changes in tryptophan fluorescence accompany hydrolysis of ATP at low concentrations, in media containing Mg2+, Na+ and K+. The fluorescence response reflects interconversion between the initial enzyme conformation, E1 . Na and the steady-state turnover intermediate E2 . (K). 4. The phosphorylated intermediate, E2P can be detected by a fluorescence increase accompanying hydrolysis of ATP in media containing Mg2+ and Na+ but no K+. 5. The conformational states and reaction mechanism of the (Na+ + K+)-ATPase are discussed in the light of this work. The results permit a comparison of the behaviour of the enzyme at both low and high nucleotide concentrations.  相似文献   

11.
The kinetic data of magnesium and inorganic phosphate inhibition of the (Na+,K+)-dependent ATP hydrolysis are consistent with a model where both ligands act independently and their release in the ATPase cycle is an ordered process where inorganic phosphate is released first. The effects of magnesium on the stimulation of the ATPase activity by Na+, K+ and ATP, and the inhibition of that activity by inorganic phosphate, are consistent with Mg2+ acting both as a 'product' and as a dead-end inhibitor. The dead-end Mg-enzyme complex would be produced with an enzyme form located downstream in the reaction sequence from the point where Mg2+ acts as a 'product' inhibitor. In the absence of K+, Mg2+ inhibition was reduced when either Na+ or ATP concentrations were increased well beyond those concentrations needed to saturate their high-affinity sites. This ATP effect suggests that the dead-end Mg-enzyme complex formation is affected by the speed of the E2-E1 conformational change. The present model is consistent with the formation of an Mg-phosphoenzyme complex insensitive to K+ which could become K+-sensitive in the presence of high Na+ concentrations. These Mg-enzyme complexes appear as intermediaries in the Na+-ATPase activity found in the absence of external Na+ and K+. These results can be interpreted on the basis of Mg2+ binding to a single site in the enzyme molecule. In addition, these experiments provide kinetic evidence indicating that the stimulation by external Na+ of the ATPase activity in the absence of K+ is due to a K+-like action of Na+ on the external K+ sites.  相似文献   

12.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

13.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

14.
Chymotrypsin in NaCl medium at low ionic strength rapidly cleaves a bond in the N-terminal half of the alpha-subunit of pure membrane-bound (Na+ + K+)-ATPase from outer renal medulla. Secondary cleavage is very slow and the alpha-subunit can be converted almost quantitatively to a 78 kDa fragment. The sensitive bond is exposed to cleavage when the protein is stabilized in the E1 form by binding of Na+ or nucleotides. The bond is protected in medium containing KCl (E2K form), but it is exposed when ADP or ATP are added (E1KATP form). Fluorescence analysis and examination of ligand binding and enzymatic properties of the cleaved protein demonstrate that cleavage of the bond stabilizes the protein in the E1 form with sites for tight binding of nucleotides and cations exposed to the medium. About two 86Rb ions are bound per cleaved alpha-subunit with normal affinity (Kd = 9 microM). The bound Rb+ is not displaced by ATP or ADP. The nucleotide-potassium antagonism is abolished and ATP is bound with high affinity both in NaCl and in KCl media. Na+-dependent phosphorylation is quantitatively recovered in the 78 kDa fragment, but the affinity for binding of [48V]vanadate is very low after cleavage. ADP-ATP exchange is stimulated 4-5-fold by cleavage; while nucleotide dependent Na+-Na+, K+-K+, or Na+-K+ exchange are abolished. Cleavage with chymotrypsin in NaCl at the N-terminal side of the phosphorylated residue thus stabilizes the E1 form of the protein and abolishes cation exchange and conformational transitions in the protein although binding of cations, nucleotides and phosphate is preserved. In contrast, cleavage with trypsin in KCl at the C-terminal side of the phosphorylated residue does not interfere with E1-E2 transitions and Na+-Na+ or K+-K+ exchange. This data support the notion that cation exchange and E1-E2 transitions are thightly coupled.  相似文献   

15.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

16.
A microsomal fraction rich in (Na+ + K+)ATPase activity has been isolated from the outer medulla of pig kidney. The ability of this preparation to form phosphoenzyme on incubation with [gamma-32P]ATP and to bind [3H]ouabain was studied when its sulfatide was hydrolyzed by arylsulfatase treatment. The K+-dependent hydrolysis of the Na+-dependent phosphorylated intermediate as well as the ouabain binding were inactivated in direct relation to the breakdown of sulfatide. Both characteristics of the (Na+ + K+)ATPase preparation, lost by arylsulfatase treatment, were partially restored by the sole addition of sulfatide. These experiments indicate that sulfatide may play a role in sodium ion transport either in the conformational transition of the K+-insensitive phosphointermediate, E1P, to the K+-sensitive intermediate, E2P, or in the configuration of the high-affinity binding site for K+ of the E2P form. In addition, this glycolipid may have a specific role in the proteolipidic subunit that binds ouabain.  相似文献   

17.
Inhibition by vanadate of the K+-dependent p-nitrophenylphosphatase activity catalyzed by the (Na+ + K+)-ATPase partially purified from pig kidney showed competitive behavior with the substrate, K+ and Mg2+ acted as cofactors in promoting that inhibition. Ligands which inhibited the K+-dependent p-nitrophenyl phosphate hydrolysis (Na+, nucleotide polyphosphates, inorganic phosphate) protected against inhibition by vanadate. The magnitude of that protection was proportional to the inhibition produced in the absence of vanadate. In the presence of only p-nitrophenyl phosphate and Mg2+, or when the protective ligands were tested alone, the activation of p-nitrophenyl phosphate hydrolysis by K+ followed a sigmoid curve in the presence as well in the absence of vanadate. However, the combination of 100 mM NaCl and 3 mM ATP resulted in a biphasic effect of K+ on the p-nitrophenyl phosphate hydrolysis in the presence of vanadate. After an initial rise at low K+ concentration, the p-nitrophenylphosphatase activity declined at high K+ concentrations; this decline became more pronounced as the vanadate concentration was increased. This biphasic response was not seen when a nonphosphorylating ATP analog was combined with Na+ (which favors the nucleotide binding) or with inorganic phosphate (a requirement for K+ - K+ exchange). Experiments with inside-out resealed vesicles from human red cells showed that in the absence of Na+ plus ATP, K+ promoted vanadate inhibition of p-nitrophenylphosphatase activity in a nonbiphasic manner, acting at cytoplasmic sites. On the other hand, in the presence of Na+ plus ATP, the biphasic response of p-nitrophenyl phosphate hydrolysis is due to K+ acting on extracellular sites. In vanadate-poisoned intact red blood cells, the biphasic response of the ouabain-sensitive Rb+ influx as a function of the external Rb+ concentration failed to develop when there was no Na+ in the extracellular media. In addition, in the absence of extracellular Na+, external Rb+ did not influence the magnitude of inhibition. The present findings indicate that external K+ favors vanadate inhibition by displacing Na+ from unspecified extracellular membrane sites.  相似文献   

18.
The fluorescence of (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein was studied under turnover conditions. At 4 degrees C the hydrolysis of ATP is slowed sufficiently to permit study of the effects of Na+, K+, and ATP on the steady-state intermediates. With Na+ and Mg2+ (Na-ATPase conditions), addition of ATP produces a 7% drop in signal that reverts back to the initial, high fluorescence after a steady state of several minutes. K-sensitive phosphoenzyme is formed under these conditions, indicating that the fluorescence signal during the steady state is associated with E2P. Under (Na,K)-ATPase conditions (Na+, K+, Mg2+), micromolar ATP produces a steady-state signal that is 25% lower than the initial fluorescence, with no detectable phosphoenzyme formed. This low-fluorescence intermediate, which is also formed by adding K+ to enzyme in the Na-ATPase steady state described above, resembles the state produced by adding K+ directly to enzyme under equilibrium conditions, i.e. E2K. The K0.5(K+) for the fluorescence decrease and for keeping the enzyme dephosphorylated are nearly identical, indicating that the fluorescence change accompanies K+-dependent dephosphorylation. High ATP increases the steady-state fluorescence during the (Na,K)-ATPase reaction; while oligomycin produces still another steady-state fluorescent intermediate. These last two intermediates may be associated with the formation of E2P and E1P, respectively.  相似文献   

19.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

20.
Synaptic plasma membranes obtained by hypo-osmotic treatment of purified Torpedo ocellata synaptosomes, contain an electrogenic Na(+)-Ca2+ exchange system. The dependence of the initial reaction rate on [Ca2+] reveals a single binding site for Ca2+ with an average apparent Km of 13.66 (S.D. = 12.07) microM [Ca2+] and maximal reaction velocity of Vmax = 11.33 (S.D. = 5.93) nmol/mg protein per s. The dependence of the initial rate of the Na+ gradient dependent Ca2+ influx on the internal [Na+] exhibits a sigmoidal curve which reaches half-maximal reaction rate at 170.8 (S.D. = 19.9) mM [Na+]. Addition of ATP gamma S does not change the K0.5 to Na+. The average Hill coefficient is 3.09 (S.D. = 0.86) indicating that 3-4 Na+ ions are exchanged for each Ca2+. Na+ gradient dependent Ca2+ uptake in Torpedo SPMs takes place also in the absence of K+ suggesting that K+ co-transport is not obligatory. The temperature dependence of the initial and steady-state rates of Na+ gradient dependent Ca2+ influx reveal that maximal reaction velocities of the Torpedo exchanger are attained between 15 and 20 degrees C. The energy of activation between 0 and 20 degrees C is 20,826 cal/mol. In comparison, rat brain synaptic plasma membrane Na(+)-Ca2+ exchanger reaches maximal reaction rates between 30 and 40 degrees C. Reconstitution of Torpedo or rat brain Na(+)-Ca2+ exchangers into a membrane composed of either Torpedo or brain phospholipids, does not alter the temperature dependence of the native Torpedo or rat brain Na(+)-Ca2+ exchangers; inspite of considerable differences in the composition of the fatty acyl chains that are esterified to brain and Torpedo phospholipid head groups and differences in membrane fluidity that were detected. An ATP-dependent Ca2+ pump, which is insensitive to FCCP, is also present in the same synaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号