首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Phan-Thien and Tanner (PTT) model is one of the most widely used rheological models. It can properly describe the common characteristics of viscoelastic non-Newtonian fluids. There is evidence that synovial fluid in human joints, which also lubricates artificial joints, is viscoelastic. Modeling the geometry of the total hip replacement, the PTT model is applied in spherical coordinates for a thin confined fluid film. A modified Reynolds equation is developed for this geometry. Several simplified illustrative problems are solved. The effect of the edge boundary condition on load-carrying normal stress is discussed. Solutions are also obtained for a simple squeezing flow. The effect of both the relaxation time and the PTT shear parameter is to reduce the load relative to a Newtonian fluid with the same viscosity. This implies that the Newtonian model is not conservative and may overpredict the load capacity. The PTT theory is a good candidate model to use for joint replacement lubrication. It is well regarded and derivable from molecular considerations. The most important non-Newtonian characteristics can be described with only three primary material parameters.  相似文献   

2.
Laser Doppler anemometry experiments and finite element simulations of steady flow in a three dimensional model of the carotid bifurcation were performed to investigate the influence of non-Newtonian properties of blood on the velocity distribution. The axial velocity distribution was measured for two fluids: a non-Newtonian blood analog fluid and a Newtonian reference fluid. Striking differences between the measured flow fields were found. The axial velocity field of the non-Newtonian fluid was flattened, had lower velocity gradients at the divider wall, and higher velocity gradients at the non-divider wall. The flow separation, as found with the Newtonian fluid, was absent. In the computations, the shear thinning behavior of the analog blood fluid was incorporated through the Carreau-Yasuda model. The viscoelastic properties of the fluid were not included. A comparison between the experimental and numerical results showed good agreement, both for the Newtonian and the non-Newtonian fluid. Since only shear thinning was included, this seems to be the dominant non-Newtonian property of the blood analog fluid under steady flow conditions.  相似文献   

3.
A numerical and experimental investigation of unsteady entry flow in a 90 degrees curved tube is presented to study the impact of the non-Newtonian properties of blood on the velocity distribution. The time-dependent flow rate for the Newtonian and the non-Newtonian blood analog fluid were identical. For the numerical computation, a Carreau-Yasuda model was employed to accommodate the shear thinning behavior of the Xanthan gum solution. The viscoelastic properties were not taken into account. The experimental results indicate that significant differences between the Newtonian and non-Newtonian fluid are present. The numerical results for both the Newtonian and the non-Newtonian fluid agree well with the experimental results. Since viscoelasticity was not included in the numerical code, shear thinning behavior of the blood analog fluid seems to be the dominant non-Newtonian property, even under unsteady flow conditions. Finally, a comparison between the non-Newtonian fluid model and a Newtonian fluid at a rescaled Reynolds number is presented. The rescaled Reynolds number, based on a characteristic rather than the high-shear rate viscosity of the Xanthan gum solution, was about three times as low as the original Reynolds number. Comparison reveals that the character of flow of the non-Newtonian fluid is simulated quite well by using the appropriate Reynolds number.  相似文献   

4.
This paper presents Computational fluid dynamic (CFD) analysis of blood flow in three different 3-D models of left coronary artery (LCA). A comparative study of flow parameters (pressure distribution, velocity distribution and wall shear stress) in each of the models is done for a non-Newtonian (Carreau) as well as the Newtonian nature of blood viscosity over a complete cardiac cycle. The difference between these two types of behavior of blood is studied for both transient and steady states of flow. Additionally, flow parameters are compared for steady and transient boundary conditions considering blood as non-Newtonian fluid. The study shows that the highest wall shear stress (WSS), velocity and pressure are found in artery having stenosis in all the three branches of LCA. The use of Newtonian blood model is a good approximation for steady as well as transient blood flow boundary conditions if shear rate is above 100 s-1. However, the assumption of steady blood flow results in underestimating the values of flow parameters such as wall shear stress, pressure and velocity.  相似文献   

5.
S Nandy  J M Tarbell 《Biorheology》1987,24(5):483-500
Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.  相似文献   

6.
Numerical studies on fluid-structure interaction have primarily relied on decoupling the solid and fluid sub-domains with the interactions treated as external boundary conditions on the individual sub-domains. The finite element applications for the fluid-structure interactions can be divided into iterative algorithms and sequential algorithms. In this paper, a new computational methodology for the analysis of tissue-fluid interaction problems is presented. The whole computational domain is treated as a single biphasic continuum, and the same space and time discretisation is carried out for the sub-domains using a penalty-based finite element model. This procedure does not require the explicit modelling of additional boundary conditions or interface elements. The developed biphasic interface finite element model is used in analysing blood flow through normal and stenotic arteries. The increase in fluid flow velocity when passing through a stenosed artery and the drop in pressure at the region are captured using this method.  相似文献   

7.
Choi HW  Barakat AI 《Biorheology》2005,42(6):493-509
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.  相似文献   

8.
The geometry of the arteries at or near arterial bifurcation influences the blood flow field, which is an important factor affecting arteriogenesis. The blood can act sometimes as a non-Newtonian fluid. However, many studies have argued that for large and medium arteries, the blood flow can be considered to be Newtonian. In this work a comprehensive investigation of non-Newtonian effects on the blood fluid dynamic behavior in an aorta-iliac bifurcation is presented. The aorta-iliac geometry is reconstructed with references to the values reported in Shah et al. (1978); the 3D geometrical model consists of three filleted cylinders of different diameters. Governing equations with the appropriate boundary conditions are solved with a finite-element code. Different rheological models are used for the blood flow through the lumen and detailed comparisons are presented for the aorta-iliac bifurcation. Results are presented in terms of the velocity profiles in the bifurcation zone and Wall Shear Stress (WSS) for different sides of the bifurcation both for male and female geometries, showing that the Newtonian fluid assumption can be made without any particular loss in terms of accuracy with respect to the other more complex rheological models.  相似文献   

9.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

10.
BACKGROUND: Patient-specific computational fluid dynamics (CFD) models derived from medical images often require simplifying assumptions to render the simulations conceptually or computationally tractable. In this study, we investigated the sensitivity of image-based CFD models of the carotid bifurcation to assumptions regarding the blood rheology. METHOD OF APPROACH: CFD simulations of three different patient-specific models were carried out assuming: a reference high-shear Newtonian viscosity, two different non-Newtonian (shear-thinning) rheology models, and Newtonian viscosities based on characteristic shear rates or, equivalently, assumed hematocrits. Sensitivity of wall shear stress (WSS) and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry, and to assumptions regarding the inlet boundary conditions. RESULTS: Sensitivity of WSS to the various rheological assumptions was roughly 1.0 dyn/cm(2) or 8%, nearly seven times less than that due to geometric uncertainty (6.7 dyn/cm(2) or 47%), and on the order of that due to inlet boundary condition assumptions. Similar trends were observed regarding OSI sensitivity. Rescaling the Newtonian viscosity based on time-averaged inlet shear rate served to approximate reasonably, if overestimate slightly, non-Newtonian behavior. CONCLUSIONS: For image-based CFD simulations of the normal carotid bifurcation, the assumption of constant viscosity at a nominal hematocrit is reasonable in light of currently available levels of geometric precision, thus serving to obviate the need to acquire patient-specific rheological data.  相似文献   

11.
Blood is a complex fluid in which the presence of the various constituents leads to significant changes in its rheological properties. Thus, an appropriate non-Newtonian model is advisable; and we choose a Modified version of the rheological model of Phan-Thien and Tanner (MPTT). The different parameters of this model, derived from the rheology of polymers, allow characterization of the non-Newtonian nature of blood, taking into account the behavior of red blood cells in plasma. Using the MPTT model that we implemented in the open access software OpenFOAM, numerical simulations have been performed on blood flow in the thoracic aorta for a healthy patient. We started from a patient-specific model which was constructed from medical images. Exiting flow boundary conditions have been developped, based on a 3-element Windkessel model to approximate physiological conditions. The parameters of the Windkessel model were calibrated with in vivo measurements of flow rate and pressure. The influence of the selected viscosity of red blood cells on the flow and wall shear stress (WSS) was investigated. Results obtained from this model were compared to those of the Newtonian model, and to those of a generalized Newtonian model, as well as to in vivo dynamic data from 4D MRI during a cardiac cycle. Upon evaluating the results, the MPTT model shows better agreement with the MRI data during the systolic and diastolic phases than the Newtonian or generalized Newtonian model, which confirms our interest in using a complex viscoelastic model.  相似文献   

12.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

13.
An asymptotic analysis of a lubrication problem is presented for a model of articular cartilage and synovial fluid under the squeeze-film condition. This model is based upon the following constitutive assumptions: (1) articular cartilage is a linear porous-permeable biphasic material filled with a linearly viscous fluid (i.e. Newtonian fluid); (2) synovial fluid is also a linearly viscous fluid. The geometry of the problem is defined by assuming that (1) cartilage is a uniform layer of thickness H; (2) synovial fluid is a very thin layer compared to H; (3) the radius R of the load-supporting area (or the effective radius of curvature of joint surface, Ri) is large compared to H. Squeeze-film action is generated in the lubricant by a step loading function applied onto the two bearing surfaces. The model assumptions and the material properties yield two small parameters in the mathematical formulation. Based on these two small parameters, two coupled nonlinear partial differential equations were derived from an asymptotic analysis of the problem: one for the lubricant (analogous to the Reynolds equation) and one for the cartilage. For known properties of normal cartilage, our calculations show: (1) the cartilage layer deforms to enlarge the load-supporting area; (2) cartilage deformation acts to reduce the lateral fluid speed in the lubricant, thus prolonging the squeeze-film time which ranges from 1 to 10 s; (3) lubricant fluid in the gap is forced from the central high-pressure region into cartilage, and expelled from the tissue at the low-pressure periphery of the load-bearing region; and (4) tensile hoop stress exists at the cartilage surface despite the compressive squeeze-film loading condition. This hoop stress results directly from the radial flow of the interstitial fluid in the cartilage layer.  相似文献   

14.
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube   总被引:2,自引:0,他引:2  
Niu J  Fu C  Tan W 《PloS one》2012,7(5):e37274
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.  相似文献   

15.
K Perktold  R Peter  M Resch 《Biorheology》1989,26(6):1011-1030
Blood flow is analysed by means of computer simulation in an idealized arterial bifurcation model which is pathologically altered by a saccular aneurysm. The theoretical study of the flow pattern and the paths of fluid particles is carried out under pulsatile Newtonian and non-Newtonian flow conditions. The governing equations are solved numerically with the use of the finite element method. The results show the disturbed blood flow in the bifurcation and the relatively low intra-aneurysmal flow circulation. In addition to the study of basic flow patterns in the segment, a comparison of non-Newtonian and Newtonian results is carried out. This comparison proves that for the considered large artery model under physiological flow conditions where the yield number is relatively low there is no essential difference in the results.  相似文献   

16.
A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head cartilage experience maximum tensile and compressive stresses are at the cartilage-bone interface, away from the center of the contact area.  相似文献   

17.
Blood flow dynamics in saccular aneurysm models of the basilar artery   总被引:1,自引:0,他引:1  
Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This paper describes the flow dynamics in two representative models of a terminal aneurysm of the basilar artery under Newtonian and non-Newtonian fluid assumptions, and compares their hemodynamics with that of a healthy basilar artery. Virtual aneurysm models are investigated numerically, with geometric features defined by beta = 0 deg and beta = 23.2 deg, where beta is the tilt angle of the aneurysm dome with respect to the basilar artery. The intra-aneurysmal pulsatile flow shows complex ring vortex structures for beta = 0 deg and single recirculation regions for beta = 23.2 deg during both systole and diastole. The pressure and shear stress on the aneurysm wall exhibit large temporal and spatial variations for both models. When compared to a non-Newtonian fluid, the symmetric aneurysm model (beta = 0 deg) exhibits a more unstable Newtonian flow dynamics, although with a lower peak wall shear stress than the asymmetric model (beta = 23.2 deg). The non-Newtonian fluid assumption yields more stable flows than a Newtonian fluid, for the same inlet flow rate. Both fluid modeling assumptions, however, lead to asymmetric oscillatory flows inside the aneurysm dome.  相似文献   

18.
Z Wang  A Sun  Y Fan  X Deng 《Biorheology》2012,49(4):249-259
To elucidate the difference between Newtonian and shear thinning non-Newtonian assumptions of blood in the analysis of DES drug delivery, we numerically simulated the local flow pattern and the concentration distribution of the drug at the lumen-tissue interface for a structurally simplified DES deployed in a curved segment of an artery under pulsatile blood flow conditions. The numerical results showed that when compared with the Newtonian model, the Carreau (shear thinning) model could lead to some differences in the luminal surface drug concentration in certain areas along the outer wall of the curved vessel. In most areas of the vessel, however, there were no significant differences between the 2 models. Particularly, no significant difference between the two models was found in terms of the area-averaged luminal surface drug concentration. Therefore, we believe that the shear thinning property of blood may play little roles in DES drug delivery. Nevertheless, before we draw the conclusion that Newtonian assumption of blood can be used to replace its non-Newtonian one for the numerical simulation of drug transport in the DES implanted coronary artery, other more complex mechanical properties of blood such as its thixotropic behavior should be tested.  相似文献   

19.
D Liepsch  S Moravec 《Biorheology》1984,21(4):571-586
In addition to biochemical factors, hydromechanical influences are responsible for atherogenesis and deposits of blood platelets at bends and bifurcations of human arteries. Hence the flow patterns were simulated in a true-to-scale three-dimensional bifurcation of a human renal artery model and of an arterial femoralis with Newtonian and non-Newtonian blood like fluid. Investigations were made with steady and pulsatile flow. The velocity profiles (at physiological Re-numbers) were measured after the bifurcations with a laser-Doppler-anemometer. In previous works Newtonian fluids were used to investigate the flow in bends and bifurcations of rigid and elastic simplified models. In this paper, emphasis is placed on the difference between rigid and elastic models and also Newtonian and non Newtonian flow behavior. Differences between Newtonian and non Newtonian fluids may especially be expected to occur after branches where the flow has local strong convective elements such as in reverse zones and flow separation points.  相似文献   

20.
Summary Mean relative gas holdup, slip velocity, bubble size distribution, mean specific interfacial area, and volumetric mass transfer coefficient of oxygen were estimated in sparged columns 14 cm in diameter and 380 and/or 390 cm high with two different aerator types (porous plate and injector nozzle) in highly viscous Newtonian (glycerol solutions) and non-Newtonian (CMC solutions) fluids.For the Newtonian liquids the above properties were estimated as function of the viscosity of the liquid. For the non-Newtonian liquids they were determined as function of the fluid consistency index and flow behavior index. Significant differences between Newtonian and non-Newtonian systems appear. In Newtonian medium kL a drops with increasing viscosity and already approaches a constant value at =40 cP. In pseudoplastic medium kL a varies with the fluid consistency and flow behavior indexes in the entire investigated range.In both of these systems the primary bubble population changes into two or three populations along the reactor: the medium bubbles gradually disappear and small and large bubbles are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号