首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
The sites of sequences homologous to a murine cDNA for ribonucleotide reductase (RR) subunit M2 were determined on human and murine chromosomes by Southern blot analysis of interspecies somatic cell hybrid lines and by in situ hybridization. In the human genome, four chromosomal sites carrying RRM2-related sequences were identified at 1p31----p33, 1q21----q23, 2p24----p25, and Xp11----p21. In the mouse, M2 sequences were found on chromosomes 4, 7, 12, and 13 by somatic cell hybrid studies. By Southern analysis of human hydroxyurea-resistant cells that overproduce M2 because of gene amplification, we have identified the amplified restriction fragments as those that map to chromosome 2. To further confirm the site of the functional RRM2 locus, two other cDNA clones, p5-8 and S7 (coding for ornithine decarboxylase; ODC), which are coamplified with RRM2 sequences in human and rodent hydroxyurea-resistant cell lines, were mapped by Southern and in situ hybridization. Their chromosomal map positions coincided with the region of human chromosome 2 (p24----p25) that also contains one of the four RRM2-like sequences. Since this RRM2 sequence and p5-8 and ODC are most likely part of the same amplification unit, the RRM2 structural gene can be assigned to human chromosome 2p24----p25. This region is homologous to a region of mouse chromosome 12 that also carries one of numerous ODC-like sequences. In an RRM2-overproducing mouse cell line, we found amplification of the chromosome 12-specific restriction fragments. Thus, we conclude that mouse chromosome 12 carries the functional locus for RRM2.  相似文献   

2.
F J Benham  S Povey 《Genomics》1989,5(2):209-214
Several highly homologous glyceraldehyde-3-phosphate dehydrogenase (GAPD)-related sequences have been identified previously in human DNA by Southern blot analysis. Protein studies have identified only a single expressed locus for this major glycolytic enzyme, and this maps to chromosome 12p13. Sequence analysis of a GAPD muscle cDNA clone and a GAPD-related clone retrieved from an X-chromosome recombinant library showed that the latter was a processed pseudogene that maps to Xp11-p21. In this study, we have determined the chromosomal locations of several of the additional GAPD-related human sequences using a short 3' end sequence from the cDNA to probe DNA from a series of human-rodent somatic cell hybrids on Southern blots. Eight HindIII GAPD-related sequences detected at high stringency have been mapped to 6 different chromosomes. Several of the additional sequences detected at more moderate stringency have been localized to a further 10 chromosomal sites. Together, these sites constitute the known expressed locus, the known X-linked pseudogene, and 15 GAPD-like loci.  相似文献   

3.
The susceptibility to collagen-induced arthritis in the highly susceptible DBA/1 mouse has earlier been shown to be partly controlled by the MHC class II gene Aq. To identify susceptibility loci outside of MHC, we have made crosses between DBA/1 and the less susceptible B10.Q strain, both expressing the MHC class II gene Aq. Analysis of 224 F2 intercross mice with 170 microsatellite markers in a genome-wide scan suggested 4 quantitative trait loci controlling arthritis susceptibility located on chromosomes 6, 7, 8, and 10. The locus on chromosome 6 (Cia6), which was associated with arthritis onset, yielded a logarithm of odds score of 4.7 in the F2 intercross experiment and was reproduced in serial backcross experiments. Surprisingly, the DBA/1 allele had a recessive effect leading to a delay in arthritis onset. The suggestive loci on chromosomes 7 and 10 were associated with arthritis severity rather than onset, and another suggestive locus on chromosome 8 was most closely associated with arthritis incidence. The loci on chromosomes 7, 8, and 10 all appeared to contain disease-promoting alleles derived from the DBA/1 strain. Interestingly, most of the identified loci were situated in chromosomal regions that are homologous to regions in the rat genome containing susceptibility genes for arthritis; the mouse Cia6 locus is homologous with the rat Cia3, Pia5, Pia2, and Aia3; the locus on chromosome 7 (Cia7) is homologous with the rat Cia2; and the locus on chromosome 10 (Cia8) is homologous with the rat Cia4.  相似文献   

4.
Infection of mouse embryos with Moloney murine leukemia virus (M-MuLV) has yielded several mouse substrains with stable germ line integration of retroviral DNA at distinct chromosomal loci (Mov loci; Jaenisch et al., 1981). There is evidence that flanking DNA sequences can have an effect on virus expression and, conversely, inserted viral DNA may affect the expression of adjacent host genes. As part of our studies on the interaction of inserted M-MuLV with the mouse genome, we have chromosomally mapped four different Mov loci by hybridizing single-copy mouse sequences, flanking the proviral DNA, to interspecies somatic cell hybrids. Furthermore, these sequences were assigned regionally by in situ hybridization to mouse metaphase chromosomes. In Mov-13 mice, M-MuLV had inserted into the alpha 1(I) collagen gene leading to early embryonic death in homozygotes. We have assigned this locus to the distal region of chromosome 11. Thus, the alpha 1(I) collagen gene is part of an evolutionarily conserved linkage group with the homologous genes on human chromosome 17. Three other proviral integration sites were mapped to chromosome 1, bands BC (Mov-7), chromosome 11, bands BC (Mov-9), and chromosome 3, bands FG (Mov-10). The Mov-10-specific probe detects an EcoRI-specific restriction fragment length polymorphism, which can make this probe a useful genetic marker.  相似文献   

5.
Chromosome mapping of the murine syndecan gene.   总被引:1,自引:0,他引:1  
The chromosomal localization of the murine syndecan gene was determined by analysis of DNA from a panel of mouse-hamster cell hybrids containing various mouse chromosomes, detection of immunoreactive syndecan in culture medium of these cells, and linkage analysis of a mouse interspecific backcross. Southern analysis of the mouse-hamster cell hybrid DNA shows two distinct hybridizing sequences, one on mouse Chromosome 12 and the other on the X chromosome. Localization of the syndecan gene to mouse Chromosome 12 was determined by detection of immunoreactive syndecan in the culture medium of cell hybrids containing mouse Chromosome 12. Hybrids containing other mouse chromosomes were negative. Linkage analysis by Southern hybridization of DNA from a mouse interspecific backcross using a syndecan-specific probe localized the syndecan gene locus, Synd, to the proximal end of Chromosome 12, tightly linked to the Pomc-1 and Nmyc loci. The syndecan gene is likely on human Chromosome 2 because this region shows conservation of synteny between mouse and human chromosomes.  相似文献   

6.
LEF-1 is a 54-kDa nuclear protein that is expressed specifically in pre-B and T-cells. It binds to a functionally important site in the T-cell receptor alpha enhancer and contributes to maximal enhancer activity. LEF-1 is a member of a family of regulatory proteins that share homology with the high mobility group protein 1 (HMG1). The location of the LEF1 gene on human and mouse chromosomes was determined by Southern blot analysis of DNA from panels of interspecies somatic cell hybrids using a murine cDNA probe. Human-specific DNA fragments were detected in all somatic cell hybrids that retained the human chromosomal region 4cen-q31.2. Fluorescent in situ hybridization with two biotin-labeled overlapping human genomic cosmids revealed a specific hybridization signal at 4q23-q25. The homologous locus in the mouse was mapped to chromosome 3 by Southern analysis of rodent x mouse hybrid cell DNA. This chromosomal location was confirmed by the use of a restriction fragment length polymorphism (RFLP) in recombinant inbred mouse strains. The results of this RFLP analysis indicated that the mouse Lef-1 gene was closely linked to Pmv-39 and Egf and was likely placed between these loci, both of which were previously mapped to distal mouse chromosome 3. Our mapping results did not suggest involvement of this gene in previously mapped genetic disorders or in known neoplasia-associated translocation breakpoints.  相似文献   

7.
M. Schartl 《Genetics》1988,119(3):679-685
In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus.  相似文献   

8.
G MacDonald  M L Chu  D R Cox 《Genomics》1991,11(2):317-323
Comparative mapping of human and mouse DNA for regions of genetic homology between human Chromosome 21 and the mouse genome is of interest because of the possibility of developing mouse models of human trisomy 21 (Down syndrome), understanding chromosome evolution, and isolating novel sequences conserved between the two species. At least two mouse chromosomes are known to carry sequences homologous to those on human Chromosome 21: mouse Chromosome 16 (D21S16h, D21S13h, D21S52h, App, Sod-1, Mx-1, Ets-2, Prgs,Ifnar) and mouse Chromosome 17 (D21S56h, Crya-1, and Cbs). Recently, five additional genes have been mapped within region 21q22 of human Chromosome 21:PFKL, CD18, COL6A1, COL6A2, and S100B. To assign these sequences to specific mouse chromosomes, we used human cDNA probes for COL6A1, COL6A2, CD18, and PFKL and a rat brain cDNA probe for S100B in conjunction with a panel of seven Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes. The specific chromosome complements of the hybrid cell lines and the presence or absence of hybridizing mouse sequences in their DNAs allow us to assign all five sequences to mouse Chromosome 10, with the assignment of Pfkl reported here for the first time. Analysis of genomic mouse DNA fragments produced by digestion with rare-cutting restriction enzymes and separated using pulsed-field gel electrophoresis allows us to construct a fine-structure physical map of two segments of the region of Chromosome 10 containing these five markers. The five loci span at least 1900 kb of mouse DNA and are consistent with the human order: Pfkl-Cd-18-Col6a-1-Col6a-2-S100b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Restriction fragment length polymorphisms (RFLPs) were observed in BamHI-digested mouse DNA probed with a cDNA for human fibronectin. Analysis of the inheritance of fibronectin RFLPs in AKXD and SWXJ recombinant inbred strains of mice mapped the locus, Fn-1, to the midregion of mouse chromosome 1 about 4 cM distal from the loci encoding gamma-crystallins (Cryg). Loci homologous to genes in the centromeric third of mouse chromosome 1 are also syntenic in rats, humans, and cattle and may, therefore, mark a large conserved chromosomal segment of the mammalian genome.  相似文献   

10.
The induction of thymic lymphomas by Moloney murine leukemia virus in the rat is linked to provirus integration in at least four independent cellular DNA regions (Mlvi-1, Mlvi-2, Mlvi-3, and c-myc). Because sequences homologous to at least three of these regions (Mlvi-1, Mlvi-2, and c-myc) map to chromosome 15 in the mouse, the question was raised whether they are closely linked in the rat genome and whether provirus integration in any one of these regions affects the same functional domain in rat DNA. In this study, we identified the chromosomal map location of Mlvi-1, Mlvi-2, and Mlvi-3 in the rat by using mouse-rat somatic cell hybrids that lose the rat chromosomes. The results showed that Mlvi-1 maps similarly to c-myc to chromosome 7, and Mlvi-2 maps to chromosome 2. Mlvi-3 probably maps to chromosome 15. We conclude that Mlvi-1, Mlvi-2, and Mlvi-3 are separate and independent genetic loci. Although Mlvi-1 and c-myc map to the same chromosome, they are not related, as determined by hybridization and restriction endonuclease mapping. The chromosomal map location of Mlvi-1 to chromosome 7 and Mlvi-2 to chromosome 2 is interesting, since chromosomal aberrations involving these two chromosomes are reproducibly observed in rat neoplasias induced by a variety of agents.  相似文献   

11.
Human and mouse amelogenin gene loci are on the sex chromosomes   总被引:19,自引:0,他引:19  
Enamel is the outermost covering of teeth and is the hardest tissue in the vertebrate body. The enamel matrix is composed of enamelin and amelogenin classes of protein. We have determined the chromosomal locations for the human and mouse amelogenin (AMEL) loci using Southern blot analyses of DNA from human, mouse, or somatic cell hybrids by hybridization to a characterized mouse amelogenin cDNA. We have determined that human AMEL sequences are located on the distal short arm of the X chromosome in the p22.1----p22.3 region and near the centromere on the Y chromosome, possibly at the proximal long arm (Yq11) region. These chromosomal assignments are consistent with the hypothesis that perturbation of the amelogenin gene is involved in X-linked types of amelogenesis imperfecta, as well as with the Y-chromosomal locations for genes that participate in regulating tooth size and shape. Unlike the locus in humans, the mouse AMEL locus appears to be assigned solely to the X chromosome. Finally, together with the data on other X and Y chromosome sequences, these data for AMEL mapping support the notion of a pericentric inversion occurring in the human Y chromosome during primate evolution.  相似文献   

12.
The aldolase genes represent an ancient gene family with tissue-specific isozymic forms expressed only in vertebrates. The chromosomal locations of the aldolase genes provide insight into their tissue-specific and developmentally regulated expression and evolution. DNA probes for the human aldolase-A and -C genes and for an aldolase pseudogene were used to quantify and map the aldolase loci in the haploid human genome. Genomic hybridization of restriction fragments determined that all the aldolase genes exist in single copy in the haploid human genome. Spot-blot analysis of sorted chromosomes mapped human aldolase A to chromosome 16, aldolase C to chromosome 17, the pseudogene to chromosome 10; it previously had mapped the aldolase-B gene to chromosome 9. All loci are unlinked and located on to two pairs of morphologically similar chromosomes, a situation consistent with tetraploidization during isozymic and vertebrate evolution. Sequence comparisons of expressed and flanking regions support this conclusion. These locations on similar chromosome pairs correctly predicted that the aldolase pseudogene arose when sequences from the aldolase-A gene were inserted into the homologous aldolase location on chromosome 10.  相似文献   

13.
14.
To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.  相似文献   

15.
A locus harboring a human endogenous retroviral LTR (long terminal repeat) was mapped on the short arm of human chromosome 7 (7p22), and its evolutionary history was investigated. Sequences of two human genome fragments that were homologous to the LTR-flanking sequences were found in human genome databases: (1) an LTR-containing DNA fragment from region 3p13 of the human genome, which includes clusters of olfactory receptor genes and pseudogenes; and (2) a fragment of region 21q22.1 lacking LTR sequences. PCR analysis demonstrated that LTRs with highly homologous flanking sequences could be found in the genomes of human, chimp, gorilla, and orangutan, but were absent from the genomes of gibbon and New World monkeys. A PCR assay with a primer set corresponding to the sequence from human Chr 3 allowed us to detect LTR-containing paralogous sequences on human chromosomes 3, 4, 7, and 11. The divergence times for the LTR-flanking sequences on chromosomes 3 and 7, and the paralogous sequence on chromosome 21, were evaluated and used to reconstruct the order of duplication events and retroviral insertions. (1) An initial duplication event that occurred 14-17 Mya and before LTR insertion - produced two loci, one corresponding to that located on Chr 21, while the second was the ancestor of the loci on chromosomes 3 and 7. (2) Insertion of the LTR (most probably as a provirus) into this ancestral locus took place 13 Mya. (3) Duplication of the LTR-containing ancestral locus occurred 11 Mya, forming the paralogous modern loci on Chr 3 and 7.  相似文献   

16.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

17.
Recently a candidate gene for the primary testis-determining factor (TDF) encoding a zinc finger protein (ZFY) has been cloned from the human Y chromosome. A highly homologous X-linked copy has also been identified. Using this human sequence it is possible to identify two Y loci, an X and an autosomal locus in the mouse (Zfy-1, Zfy-2, Zfx and Zfa, respectively). Suprisingly ZFY is more homologous to the mouse X and autosomal sequences than it is to either of the Y-linked loci. Both Zfy-1 and Zfy-2 are present in the Sxr region of the Y but Zfy-2 is absent in the Sxr deletion variant Sxrb (or Sxr") suggesting it is not necessary for male determination. Extensive backcross analyses map Zfa to mouse chromosome 10 and Zfx to a 5-cM interval between anonymous X probe MDXS120 and the tabby locus (Ta). We also show that the mouse androgen receptor locus (m-AR) believed to underlie the testicular feminization mutation (Tfm) shows complete linkage to Zfx. Comparative mapping indicates that in man these genes lie in separate conserved DNA segments.  相似文献   

18.
Characterization and application of soybean YACs to molecular cytogenetics   总被引:3,自引:0,他引:3  
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.  相似文献   

19.
Summary By merging two efficient technologies, bivariate flow sorting of human metaphase chromosomes and a recombination-based assay for sequence complexity, we isolated 28 cloned DNA segments homologous to loci on human chromosome 21. Subregional mapping of these DNA segments with a somatic cell hybrid panel showed that 26 of the 28 cloned DNA sequences are distributed along the long arm of chromosome 21, while the other 2 hybridize with sequences on the short arm of both chromosome 21 and other chromosomes. This new collection of probes homologous to chromosome 21 should facilitate molecular analyses of trisomy 21 by providing DNA probes for the linkage map of chromosome 21, for studies of nondisjunction, for chromosome walking in clinically relevant subregions of chromosome 21, and for the isolation of genes on chromosome 21 following the screening of cDNA libraries.  相似文献   

20.
The chromosome conformation capture technique is used to monitor intra- and intermolecular chromosomal associations. By introducing an adaptation of this technique, Ling and colleagues have identified an unexpected coassociation between two loci on separate chromosomes in mouse nuclei, the imprinted Igf2-H19 locus of chromosome 7 and the Wsb1-Nf1 locus of chromosome 11. Strikingly, this interaction is CCCTC-binding factor (CTCF)-dependent and strictly allele specific. These findings extend our appreciation for genome organization and its influence on gene expression and imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号