首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two subtypes of phospholipases A2 (PLA2s) with the ability to induce myonecrosis, ‘Asp49’ and ‘Lys49’ myotoxins, often coexist in viperid snake venoms. Since the latter lack catalytic activity, two different mechanisms are involved in their myotoxicity. A synergism between Asp49 and Lys49 myotoxins from Bothrops asper was previously observed in vitro, enhancing Ca2+ entry and cell death when acting together upon C2C12 myotubes. These observations are extended for the first time in vivo, by demonstrating a clear enhancement of myonecrosis by the combined action of these two toxins in mice. In addition, novel aspects of their synergism were revealed using myotubes. Proportions of Asp49 myotoxin as low as 0.1% of the Lys49 myotoxin are sufficient to enhance cytotoxicity of the latter, but not the opposite. Sublytic amounts of Asp49 myotoxin also enhanced cytotoxicity of a synthetic peptide encompassing the toxic region of Lys49 myotoxin. Asp49 myotoxin rendered myotubes more susceptible to osmotic lysis, whereas Lys49 myotoxin did not. In contrast to myotoxic Asp49 PLA2, an acidic non-toxic PLA2 from the same venom did not markedly synergize with Lys49 myotoxin, revealing a functional difference between basic and acidic PLA2 enzymes. It is suggested that Asp49 myotoxins synergize with Lys49 myotoxins by virtue of their PLA2 activity. In addition to the membrane-destabilizing effect of this activity, Asp49 myotoxins may generate anionic patches of hydrolytic reaction products, facilitating electrostatic interactions with Lys49 myotoxins. These data provide new evidence for the evolutionary adaptive value of the two subtypes of PLA2 myotoxins acting synergistically in viperid venoms.  相似文献   

2.
Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A2 (PLA2s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA2 from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin''s activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA2s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA2. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA2 inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy.  相似文献   

3.
The LYS49-PLA2s myotoxins have attracted attention as models for the induction of myonecrosis by a catalytically independent mechanism of action. Structural studies and biological activities have demonstrated that the myotoxic activity of LYS49-PLA2 is independent of the catalytic activity site. The myotoxic effect is conventionally thought to be to due to the C-terminal region 111-121, which plays an effective role in membrane damage. In the present study, Bn IV LYS49-PLA2 was isolated from Bothrops neuwiedi snake venom in complex with myristic acid (CH3(CH2)12COOH) and its overall structure was refined at 2.2 Å resolution. The Bn IV crystals belong to monoclinic space group P21 and contain a dimer in the asymmetric unit. The unit cell parameters are a = 38.8, b = 70.4, c = 44.0 Å. The biological assembly is a “conventional dimer” and the results confirm that dimer formation is not relevant to the myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-terminal region and the Bn IV C-terminal residues NKKYRY are a probable heparin binding domain. These findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is through some kind of cell signal transduction mediated by heparin complexes.  相似文献   

4.
Group IVA phospholipase A2 (GIVA PLA2) catalyzes the release of arachidonic acid (AA) from the sn-2 position of glycerophospholipids. AA is then further metabolized into terminal signaling molecules including numerous prostaglandins. We have now demonstrated the involvement of phosphatidic acid phosphohydrolase 1 (PAP-1) and protein kinase C (PKC) in the Toll-like receptor-4 (TLR-4) activation of GIVA PLA2. We also studied the effect of PAP-1 and PKC on Ca+ 2 induced and synergy enhanced GIVA PLA2 activation. We observed that the AA release induced by exposure of RAW 264.7 macrophages to the TLR-4 specific agonist Kdo2-Lipid A is blocked by the PAP-1 inhibitors bromoenol lactone (BEL) and propranolol as well as the PKC inhibitor Ro 31-8220; however these inhibitors did not reduce AA release stimulated by Ca+ 2 influx induced by the P2X7 purinergic receptor agonist ATP. Additionally, stimulation of cells with diacylglycerol (DAG), the product of PAP-1 mediated hydrolysis, initiated AA release from unstimulated cells as well as restored normal AA release from cells treated with PAP-1 inhibitors. Finally, neither PAP-1 nor PKC inhibition reduced GIVA PLA2 synergistic activation by stimulation with Kdo2-Lipid A and ATP.  相似文献   

5.
MP-III 4R PLA2 was purified from the venom of Bothrops pirajai venom (Bahia's jararacussu) after three chromatographic steps which started with RP-HPLC. The complete amino acid sequence of MP-III 4R PLA2 from Bothrops pirajai was determined by amino acid sequencing of reduced and carboxymethylated MP-III 4R and the isolated peptides from clostripain and protease V8 digestion. MP-III 4R is a D49 PLA2 with 121 amino acid residues and has a molecular weight estimated at 13,800 Da, with 14 half-cysteines. This protein showed moderate PLA2 and anticoagulant activity. This PLA2 does not have a high degree of homology with other bothropic PLA2-like myotoxins (~75%) and nonbothropic myotoxins (~60%). MP-III 4R is a new PLA2, which was isolated using exclusively analytical and preparative HPLC methods. Based on the N-terminal sequence and biological activities, MP-III 4R was identified as similar to piratoxin-III (PrTX-III), which was isolated by conventional chromatography based on molecular exclusion ion exchange chromatography. Clinical manifestations indicate that at the site of toxin injection, there may be pain of variable intensity, because animals continue to lick the limb. No clinical sign indicating general toxicity was noticed. Myotoxicity was observed in gastrocnemius muscle cells after exposure to MP-III 4R, with a high frequency (70%) of affected muscle fibers.  相似文献   

6.
Phospholipases A2 (PLA2) are major components of snake venoms, exerting a variety of relevant toxic actions such as neurotoxicity and myotoxicity, among others. Since the majority of toxic PLA2s are basic proteins, acidic isoforms and their possible roles in venoms are less understood. In this study, an acidic enzyme (BaspPLA2-II) was isolated from the venom of Bothrops asper (Pacific region of Costa Rica) and characterized. BaspPLA2-II is monomeric, with a mass of 14,212 ± 6 Da and a pI of 4.9. Its complete sequence of 124 amino acids was deduced through cDNA and protein sequencing, showing that it belongs to the Asp49 group of catalytically active enzymes. In vivo and in vitro assays demonstrated that BaspPLA2-II, in contrast to the basic Asp49 counterparts present in the same venom, lacks myotoxic, cytotoxic, and anticoagulant activities. BaspPLA2-II also differed from other acidic PLA2s described in Bothrops spp. venoms, as it did not show hypotensive and anti-platelet aggregation activities. Furthermore, this enzyme was not lethal to mice at intravenous doses up to 100 μg (5.9 μg/g), indicating its lack of neurotoxic activity. The only toxic effect recorded in vivo was a moderate induction of local edema. Therefore, the toxicological characteristics of BaspPLA2-II suggest that it does not play a key role in the pathophysiology of envenomings by B. asper, and that its purpose might be restricted to digestive functions. Immunochemical analyses using antibodies raised against BaspPLA2-II revealed that acidic and basic PLA2s form two different antigenic groups in B. asper venom.  相似文献   

7.
Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA2) and secreted phospholipases A2 (sPLA2) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA2s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA2 (iPLA2). Two structurally-divergent inhibitors of group IV cPLA2 completely block arachidonic acid release by macrophages in response to non-physiological (Ca2+ ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA2s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA2s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA2 inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA2-alpha, iPLA2 and several sPLA2s. Cytosolic PLA2-alpha is the major enzyme responsible for lipid mediator production in human macrophages.  相似文献   

8.
Aggregatibacter (Actinobacillus) actinomycetemcomitans is a facultative anaerobic gram-negative bacterium associated with severe forms of periodontitis. A leukotoxin, which belongs to the repeats-in-toxin family, is believed to be one of its virulence factors and to have an important role in the bacterium''s pathogenicity. This toxin selectively kills human leukocytes by inducing apoptosis and lysis. Here, we report that leukotoxin-induced cell death of macrophages proceeded through a process that differs from the classical characteristics of apoptosis and necrosis. A. actinomycetemcomitans leukotoxin-induced several cellular and molecular mechanisms in human macrophages that led to a specific and excessive pro-inflammatory response with particular secretion of both interleukin (IL)-1β and IL-18. In addition, this pro-inflammatory cell death was inhibited by oxidized ATP, which indicates involvement of the purinergic receptor P2X7 in this process. This novel virulence mechanism of the leukotoxin may have an important role in the pathogenic potential of this bacterium and can be a target for future therapeutic agents.  相似文献   

9.
Cr 5 PLA2 homologous (K49) was isolated from Calloselasma rhodostoma venom in only one chromatographic step in reverse phase HPLC (RP-HPLC) (on μ-Bondapack C-18). A molecular mass of 13.965 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that Cr 5 had a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical residues of a basic PLA2. The complete amino acid sequence of Cr 5 PLA2 contains 120 residues, resulting in a calculated pI value of 5.55. This sequence shows high identity values when compared to other K49 PLA2s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA2s. The sequence found was SLVELGKMIL QETGKNPAKS YGAYGCNCGV LGRHKPKDAT DRCCFVHKCC YKKLTGCDPK KDRYSYSWKD KTIVCGENNP CLKEMCECDK AVAICLRENL DTYNKKYRYL KPFCKKADDC. In mice, Cr 5 induced myonecrosis and edema upon intramuscular and intravenous injections, respectively. The LD50 of Cr 5 was 0.070 mg/kg of the animal weight, by intracerebroventricular (i.c.v.) route. In vitro, the toxin caused rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. The isolation of this PLA2 and the combined structural and functional information obtained classify Cr 5 as a new member of the K49 PLA2 family, since it presents typical features from such proteins.  相似文献   

10.
Enzymatic release of Zn2+-glycerophosphocholine (GPC)cholinephosphodiesterase, as an amphiphilic form, from bovine brain membranes was examined. Of various membrane hydrolases, bee PLA2 was the most effective in the release of the GPC cholinephosphodiesterase (amphiphilic form, 63–70%) from membrane. Compared to pancreatic PLA2, bee PLA2 was more efficient in the release of GPC cholinephosphodiesterase. In pH-dependent release of GPl-anchored phosphodiesterase, there was a similar pH-release profile between PLA2-mediated release and spontaneous one, implying the involvement of membrane disruption in the PLA2 action. The PLA2-mediated release showed a limited time-dependence (until 45 min) and a limited dose dependence (up to 3 units / ml), characteristic of a receptor-type binding. An ionic binding of PLA2 to membrane may be alluded from the interfering effect of anionic phospholipids on the PLA2 action. In support of an interaction between PLA2 and membrane glycoproteins, the PLA2 action was found to be blocked by lectins, wheat germ agglutinin or concanavalin A. In combination with detergent, the PLA2-mediated release was found to be enhanced synergistically by saponin, a cholesterol-complexing agent. Meanwhile, an additive interaction between PLA2 and lysolecithin suggests that PLA2 action is independent of lysolecithin. It is suggested that the binding of PLA2 to specific sites of membranes, probably rich in GPI-anchored glycoproteins, may be related to the facilitated release of GPI-anchored proteins as amphiphilic form.  相似文献   

11.
The crystal structure of crotoxin, a potent presynaptic neurotoxin from Crotalus durissusterrificus, was solved at 1.35 Å resolution. It shows the architecture of the three disulfide-linked polypeptide chains (α, β, and γ) of the acidic subunit CA noncovalently complexed with the basic phospholipase A2 (PLA2) subunit CB. The unique structural scaffold of the association of the CA and CB subunits indicates that posttranslational cleavage of the pro-CA precursor is a prerequisite for the assembly of the CA-CB complex. These studies provide novel structural insights to explain the role of the CA subunit in the mechanism of action of crotoxin. The crystal structure of the highly toxic and stable CA2CBb complex crystallized here allows us to identify key amino acid residues responsible for significant differences in the pharmacological activities of the two classes of crotoxin complexes. In particular, we show that critical residues Trp31 and Trp70 of the CBb subunit establish intermolecular polar contacts with Asp99 and Asp89, respectively, of the β-chain of CA2 and contribute to the stability and toxicity of the CA2CBb complex. These interactions also lead to decreased PLA2 activity by partially blocking substrate access to the catalytic dyad and by masking several interfacial binding surface residues important for PLA2 interaction with phospholipids.Identification of the binding interface between the CA subunits and the CB subunits of crotoxin is important for the structure-based design of antineurotoxic inhibitors. Since crotoxin displays numerous physiological functions, including antitumoral properties, knowledge of its three-dimensional structure will be useful for the understanding of these diverse effects.  相似文献   

12.
Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.  相似文献   

13.
BaTX PLA2, a K49 phospholipase A2 homologue was purified from Bothrops alternatus venom after two chromatographic steps, molecular exclusion on Superdex 75 and reverse phase HPLC on μ-Bondapack C-18. A molecular mass of 13898.71 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that BaTX has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. The complete amino acid sequence of BaTX PLA2 contains 121 residues, resulting in a calculated pI value of 8.63. This sequence shows high identity values when compared to other K49 PLA2s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA2s. The sequence was SLFELGKMIL QETGKNPAKS YGAYYCYCGW GGQGQPKDAT DRCCYVHKCC YKKLTGCNPK KDRYSYSWKD KTIVCGENNS CLKELCECDK AVAICLRENL NTYNKKYRYY LKPLCKKADA C. In mice, BaTX induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. The LD50 of BaTX was 7 μg/g body weight, by intravenous route. In vitro, the toxin caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparations. The blockage 50% was achieved at a concentration of 0.03 μM: 40 ± 0.4 min and 0.07 μM: 35 ± 0.3 min. Moreover, this protein induced a rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. Thus, the combined structural and functional information obtained identify BaTX as a new member of the K49 PLA2 family, which presents the typical bioactivities described for such proteins.  相似文献   

14.
A novel basic phospholipase A2 (PLA2) isoform was isolated from Bothrops jararacussu snake venom and partially characterized. The venom was fractionated by HPLC ion-exchange chromatography in ammonium bicarbonate buffer, followed by reverse-phase HPLC to yield the protein Bj IV. Tricine SDS-PAGE in the presence or absence of dithiothreitol showed that Bj IV had a molecular mass of 15 and 30 kDa, respectively. This enzyme was able to form multimeric complexes (30, 45, and 60 kDa). Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWSWGQMIQETGLLPSYTTY . . .) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj IV had high PLA2 activity and produced moderate myonecrosis in skeletal muscle, but showed no neuromuscular activity in mouse phrenic nerve-diaphragm preparations. Bj IV showed allosteric enzymatic behavior, with maximal activity at pH 8.2 and 35-45°C. Full PLA2 activity required Ca2+ but was inhibited by Cu2+ and Zn2+, and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotins from Crotalus durissus terrificus rattlesnake venom significantly inhibited the enzymatic activity of Bj IV. The latter observation suggested that the binding site for crotapotin in this PLA2 was similar to that in the basic PLA2 of the crotoxin complex from C. d. terrificus venom. The presence of crotapotin-like proteins capable of inhibiting the catalytic activity of D49 PLA2 could partly explain the low PLA2 activity of Bothrops venoms.  相似文献   

15.
A novel phospholipase A2 (PLA2) with Asn at its site 49 was purified from the snake venom of Protobothrops mucrosquamatus by using SP-Sephadex C25, Superdex 75, Heparin-Sepharose (FF) and HPLC reverse-phage C18 chromatography and designated as TM-N49. It showed a molecular mass of 13.875 kDa on MALDI-TOF. TM-N49 does not possess enzymatic, hemolytic and hemorrhagic activities. It fails to induce platelet aggregation by itself, and does not inhibit the platelet aggregation induced by ADP. However, it exhibits potent myotoxic activity causing inflammatory cell infiltration, severe myoedema, myonecrosis and myolysis in the gastrocnemius muscles of BALB/c mice. Phylogenetic analysis found that that TM-N49 combined with two phospholipase A2s from Trimeresurus stejnegeri, TsR6 and CTs-R6 cluster into one group. Structural and functional analysis indicated that these phospholipase A2s are distinct from the other subgroups (D49 PLA2, S49 PLA2 and K49 PLA2) and represent a unique subgroup of snake venom group II PLA2, named N49 PLA2 subgroup.  相似文献   

16.
Protobothrops flavoviridis venom contains plural phospholipase A2 (PLA2) isozymes. A [Lys49]PLA2 called BPII induced cell death in human leukemia cells. PLA2, an [Asp49]PLA2 that has much stronger lipolytic activity than BPII, failed to induce cell death. BPII-treated cells showed morphological changes, DNA fragmentation, and nuclear condensation. This BPII-induced apoptotic cell death was neither inhibited by inhibitors of caspases 3 and 6 nor accompanied by activation of procaspase 3, indicating that BPII-induced cell death is caspase independent. Since inactive p-bromophenacylated BPII induced cell death, BPII-induced apoptotic cell death is independent of PLA2 lipolytic activity. Rapid externalization of phosphatidylserine in BPII-treated cells was observed for fluorescein isothiocyanate (FITC)-labeled annexin V. In the cells treated with BPII, this spread over the cell membranes, implying that the cell toxicity of BPII is mediated via its cell-surface receptor.  相似文献   

17.
Phospholipases A2 (PLA2s) are enzymes responsible for membrane disruption through Ca2+‐dependent hydrolysis of phospholipids. Lys49‐PLA2s are well‐characterized homologue PLA2s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLA2s were first believed to present residual catalytic activity but experiments with a recombinant toxin show they are incapable of catalysis. Herein, we present a new homologue Asp49‐PLA2 (BthTX‐II) that is also able to exert muscle damage. This toxin was isolated in 1992 and characterized as presenting very low catalytic activity. Interestingly, this myotoxic homologue Asp49‐PLA2 conserves all the residues responsible for Ca2+ coordination and of the catalytic network, features thought to be fundamental for PLA2 enzymatic activity. Previous crystallographic studies of apo BthTX‐II suggested this toxin could be catalytically inactive since a distortion in the calcium binding loop was observed. In this article, we show BthTX‐II is not catalytic based on an in vitro cell viability assay and time‐lapse experiments on C2C12 myotube cell cultures, X‐ray crystallography and phylogenetic studies. Cell culture experiments show that BthTX‐II is devoid of catalytic activity, as already observed for Lys49‐PLA2s. Crystallographic studies of the complex BthTX‐II/Ca2+ show that the distortion of the calcium binding loop is still present and impairs ion coordination even though Ca2+ are found interacting with other regions of the protein. Phylogenetic studies demonstrate that BthTX‐II is more phylogenetically related to Lys49‐PLA2s than to other Asp49‐PLA2s, thus allowing Crotalinae subfamily PLA2s to be classified into two main branches: a catalytic and a myotoxic one. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Bothrops brazili is a snake found in the forests of the Amazonian region whose commercial therapeutic anti-bothropic serum has low efficacy for local myotoxic effects, resulting in an important public health problem in this area. Catalytically inactive phospholipases A2-like (Lys49-PLA2s) are among the main components from Bothrops genus venoms and are capable of causing drastic myonecrosis. Several studies have shown that the C-terminal region of these toxins, which includes a variable combination of positively charged and hydrophobic residues, is responsible for their activity. In this work we describe the crystal structures of two Lys49-PLA2s (BbTX-II and MTX-II) from B. brazili venom and a comprehensive structural comparison with several Lys49-PLA2s. Based on these results, two independent sites of interaction were identified between protein and membrane which leads to the proposition of a new myotoxic mechanism for bothropic Lys49-PLA2s composed of five different steps. This proposition is able to fully explain the action of these toxins and may be useful to develop efficient inhibitors to complement the conventional antivenom administration.  相似文献   

19.
The in vitro effects of BaltTX-I, a catalytically inactive Lys49 variant of phospholipase A2 (PLA2), and BaltTX-II, an Asp49 catalytically active PLA2 isolated from Bothrops alternatus snake venom, on thioglycollate-elicited macrophages (TG-macrophages) were investigated. At non-cytotoxic concentrations, the secretory PLA2 BaltTX-I but not BaltTX-II stimulated complement receptor-mediated phagocytosis. Pharmacological treatment of TG-macrophages with staurosporine, a protein kinase C (PKC) inhibitor, showed that this kinase is involved in the increase of serum-opsonized zymosan phagocytosis induced by BaltTX-I but not BaltTX-II secretory PLA2, suggesting that PKC may be involved in the stimulatory effect of this toxin in serum-opsonized zymosan phagocytosis. Moreover, BaltTX-I and -II induced superoxide production by TG-macrophages. This superoxide production stimulated by both PLA2s was abolished after treatment of cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Our experiments showed that, at non-cytotoxic concentrations, BaltTX-I may upregulate phagocytosis via complement receptors, and that both toxins upregulated the respiratory burst in TG-macrophages.  相似文献   

20.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号