首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Kozachkov L  Herz K  Padan E 《Biochemistry》2007,46(9):2419-2430
The 3D structure of Escherichia coli NhaA, determined at pH 4, provided the first structural insights into the mechanism of antiport and pH regulation of a Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 7.0-8.5), many questions pertaining to the active state of NhaA have remained open, including the physiological role of helix X. Using a structural-based evolutionary approach in silico, we identified a segment of most conserved residues in the middle of helix X. These residues were then used as targets for functional studies at physiological pH. Cysteine-scanning mutagenesis showed that Gly303, in the middle of the conserved segment, is an essential residue and Cys replacement of Lys300 retains only Li+/H+ antiporter activity, with a 20-fold increase in the apparent KM for Li+. Cys replacements of Leu296 and Gly299 increase the apparent KM of the Na+/H+ antiporter for both Na+ and Li+. Accessibility test to N-ethylmaleimide and 2-sulfonatoethyl methanethiosulfonate showed that G299C, K300C, and G303C are accessible to the cytoplasm. Suppressor mutations and site-directed chemical cross-linking identified a functional and/or structural interaction between helix X (G295C) and helix IVp (A130C). While these results were in accordance with the acid-locked crystal structure, surprisingly, conflicting data were also obtained; E78C of helix II cross-links very efficiently with several Cys replacements of helix X, and E78K/K300E is a suppressor mutation of K300E. These results reveal that, at alkaline pH, the distance between the conserved center of helix X and E78 of helix II is drastically decreased, implying a pH-induced conformational change of one or both helices.  相似文献   

2.
One of the most interesting properties of the NhaA Na(+)/H(+) antiporter of Escherichia coli is the strong regulation of its activity by pH. This regulation is accompanied by a conformational change that can be probed by digestion with trypsin and involves the hydrophilic loop connecting the transmembrane helices VIII-IX. In the present work we show that a monoclonal antibody (mAb), 1F6, recognizes yet another domain of NhaA in a pH-dependent manner. This antibody binds NhaA at pH 8.5 but not at pH 4.5, whereas two other mAbs bind to NhaA independently of pH. The epitope of mAb 1F6 was located at the NH(2) terminus of NhaA by probing proteolytic fragments in Western blot analysis and amino acid sequencing. The antibody bound to the peptide HLHRFFSS, starting at the third amino acid of NhaA. A synthetic peptide with this sequence was shown to bind mAb 1F6 both at acidic and alkaline pH suggesting that this peptide is accessible to mAb 1F6 in the native protein only at alkaline pH. Although slightly shifted to acidic pH, the pH profile of the binding of mAb 1F6 to the antiporter is similar to that of both the Na(+)/H(+) antiporter activity as well as to its sensitivity to trypsin. We thus suggest that these pH profiles reflect a pH-dependent conformational change, which leads to activation of the antiporter. Indeed, a replacement of Gly-338 by Ser (G338S), which alleviates the pH dependence of both the NhaA activity as well as its sensitivity to trypsin, affects in a similar pattern the binding of mAb 1F6 to NhaA. Furthermore, the binding site of mAb 1F6 is involved in the functioning of the antiporter as follows: a double Cys replacement H3C/H5C causes an acidic shift by half a pH unit in the pH dependence of the antiporter; N-ethylmaleimide, which does not inhibit the wild-type protein, inhibits H3C/H5C antiporter to an extent similar to that exerted by mAb 1F6.  相似文献   

3.
Rimon A  Tzubery T  Galili L  Padan E 《Biochemistry》2002,41(50):14897-14905
The unique trypsin cleavable site of NhaA, the Na(+)/H(+) antiporter of Escherichia coli, was exploited to detect a change in mobility of cross-linked products of NhaA by polyacrylamide gel electrophoresis. Double-Cys replacements were introduced into loops, one on each side of the trypsin cleavage site (Lys 249). The proximity of paired Cys residues was assessed by disulfide cross-linking of the two tryptic fragments, using three homobifunctional cross-linking agents: 1,6-bis(maleimido)hexane (BMH), N,N'-o-phenylenedimaleimide (o-PDM), and N,N'-p-phenylenedimaleimide (p-PDM). The interloop cross-linking was found to be very specific, indicating that the loops are not merely random coils that interact randomly. In the periplasmic side of NhaA, two patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently between the double-Cys replacements A118C/S286C, N177C/S352C, and H225C/S352C; (b) only BMH cross-links the double-Cys replacements A118C/S352C, N177C/S286C, and H225C/S286C. In the cytoplasmic side of NhaA, three patterns of cross-linking are observed: (a) all three cross-linking reagents cross-link very efficiently the pairs of Cys replacements L4C/E252C, S146C/L316C, S146C/R383C, and E241C/E252C; (b) BMH and p-PDM cross-link efficiently the pairs of Cys replacements S87C/E252C, S87C/L316C, and S146C/E252C; (c) none of the reagents cross-links the double-Cys replacements L4C/L316C, L4C/R383C, S87C/R383C, A202C/E252C, A202C/L316C, A202C/R383C, E241C/L316C, and E241C/R383C. The data reveal that the N-terminus and loop VIII-IX that have previously been shown to change conformation with pH are in close proximity within the NhaA protein. The data also suggest close proximity between N-terminal and C-terminal helices at both the cytoplasmic and the periplasmic face of NhaA.  相似文献   

4.
The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.  相似文献   

5.
We examined the structure-function relationships of residues in the fifth transmembrane domain (TM5) of the Na+/H+ antiporter A (NhaA) from Helicobacter pylori (HP NhaA) by cysteine scanning mutagenesis. TM5 contains two aspartate residues, Asp-171 and Asp-172, which are essential for antiporter activity. Thirty-five residues spanning the putative TM5 and adjacent loop regions were replaced by cysteines. Cysteines replacing Val-162, Ile-165, and Asp-172 were labeled with NEM, suggesting that these three residues are exposed to a hydrophilic cavity within the membrane. Other residues in the putative TM domain, including Asp-171, were not labeled. Inhibition of NEM labeling by the membrane impermeable reagent AMS suggests that Val-162 and Ile-165 are exposed to a water filled channel open to the cytoplasmic space, whereas Asp-172 is exposed to the periplasmic space. D171C and D172C mutants completely lost Na+/H+ and Li+/H+ antiporter activities, whereas other Cys replacements did not result in a significant loss of these activities. These results suggest that Asp-171 and Asp-172 and the surrounding residues of TM5 provide an essential structure for H+ binding and Na+ or Li+ exchange. A168C and Y183C showed markedly decreased antiporter activities at acidic pH, whereas their activities were higher at alkaline pH, suggesting that the conformation of TM5 also plays a crucial role in the HP NhaA-specific acidic pH antiporter activity.  相似文献   

6.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.  相似文献   

7.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

8.
We have previously shown that the activity of NhaA is regulated by pH and found mutations that affect dramatically the pH dependence of the rate but not the K(m) (for Na(+) and Li(+)) of NhaA. In the present work, we found that helix IV is involved both in ion translocation as well as in pH regulation of NhaA. Two novel types of NhaA mutants were found clustered in trans membrane segment (TMS) IV: One type (D133C, T132C, and P129L) affects the apparent K(m) of NhaA to the cations with no significant effect on the pH profile of the antiporter; no shift of the pH profile was found when the activity of these mutants was measured at saturating Na(+) concentration. In contrast, the other type of mutations (A127V and A127T) was found to affect both the K(m) and the pH dependence of the rate of NhaA whether tested at saturating Na(+) concentration or not. These results imply that residues involved in the ion translocation of NhaA may (A127) or may not (D133, T132, and P129) overlap with those affecting the pH response of the antiporter. All mutants cluster in the N-terminal half of the putative alpha-helix IV, one type on one face, the other on the opposite. Cys accessibility test demonstrated that although D133C is located in the middle of TMS IV, it is inhibited by N-ethylmaleimide and is exposed to the cytoplasm.  相似文献   

9.
Cysteine-scanning mutagenesis was performed from Ser-130 to Leu-160 in the fourth transmembrane domain (TM4) of the Na+/H+ antiporter NhaA from Helicobacter pylori to determine the topology of each residue and to identify functionally important residues. All of the mutants were based on cysteine-less NhaA (Cys-less NhaA), which functions very similarly to the wild-type protein, and were expressed at a level similar to Cys-less NhaA. Discontinuity of [14C]N-ethylmaleimide (NEM)-reactive residues suggested that TM4 comprises residues Gly-135 to Val-156. Even within TM4, NEM reactivity was high for I136C, D141C to A143C, L146C, M150C, and G153C to R155C. These residues are thought to be located on one side of the -helical structure of TM4 and to face a putative water-filled channel. Pretreatment of intact cells with membrane-impermeable maleimide did not inhibit [14C]NEM binding to the NEM-reactive residues within TM4, suggesting that the putative channel opens toward the cytoplasm. NEM reactivity of the A143C mutant was significantly inhibited by Li+. The T140C and D141C mutants showed lower affinity for Na+ and Li+ as transport substrates, but their maximal antiporter velocities (Vmax) were relatively unaffected. Whereas the I142C and F144C mutants completely lost their Li+/H+ antiporter activity, I142C had a lower Vmax for the Na+/H+ antiporter. F144C exhibited a markedly lower Vmax and a partially reduced affinity for Na+. These results suggest that Thr-140, Asp-141, and Phe-144 are located in the end portion of a putative water-filled channel and may provide the binding site for Na+, Li+, and/or H+. Furthermore, residues Ile-142 to Phe-144 may be important for the conformational change that accompanies ion transport in NhaA.  相似文献   

10.
The Na+/H+ antiporter NhaA is the main Na+ extrusion system in E. coli. Using direct current measurements combined with a solid supported membrane (SSM), we obtained electrical data of the function of NhaA purified and reconstituted in liposomes. These measurements demonstrate NhaA's electrogenicity, its specificity for Li+ and Na+ and its pronounced pH dependence in the range pH 6.5-8.5. The mutant G338S, in contrast, presents a pH independent profile, as reported previously. A complete right-side-out orientation of the NhaA antiporter within the proteoliposomal membrane was determined using a NhaA-specific antibody based ELISA assay. This allowed for the first time the investigation of NhaA in the passive downhill uptake mode corresponding to the transport of Na+ from the periplasmic to the cytoplasmic side of the membrane. In this mode, the transporter has kinetic properties differing significantly from those of the previously investigated efflux mode. The apparent Km values were 11 mM for Na+ and 7.3 mM for Li+ at basic pH and 180 mM for Na+ and 50 mM for Li+ at neutral pH. The data demonstrate that in the passive downhill uptake mode pH regulation of the carrier affects both apparent Km as well as turnover (Vmax).  相似文献   

11.
Gerchman Y  Rimon A  Venturi M  Padan E 《Biochemistry》2001,40(11):3403-3412
Recently, a two-dimensional crystal structure of NhaA, the Na+/H+ antiporter of Escherichia coli has been obtained [Williams, K. A., Kaufer, U. G., Padan, E., Schuldiner, S. and Kühlbrandt, W. (1999) EMBO J., 18, 3558-3563]. In these crystals NhaA exists as a dimer. Using biochemical and genetic approaches here we show that NhaA exists in the native membrane as a homooligomer. Functional complementation between the polypeptides of NhaA was demonstrated by coexpression of pairs of conditional lethal (at high pH in the presence of Na+) mutant alleles of nhaA in EP432, a strain lacking antiporters. Physical interaction in the membrane was shown between the His-tagged NhaA polypeptide which is readily affinity purified from DM-solubilized membranes with a Ni2+-NTA column and another which is not; only when coexpressed did both copurify on the column. The organization of the oligomer in the membrane was studied in situ by site-directed cross-linking experiments. Cysteine residues were introduced--one per NhaA--into certain loops of Cys-less NhaA, so that only intermolecular cross-linking could take place. Different linker-size cross-linkers were applied to the membranes, and the amount of the cross-linked protein was analyzed by mobility shift on SDS-PAGE. The results are consistent with homooligomeric NhaA and the location of residue 254 in the interface between monomers. Intermolecular cross-linking of V254C caused an acidic shift in the pH profile of NhaA.  相似文献   

12.
The crystal structure of NhaA Na(+)/H(+) antiporter of Escherichia coli has provided a basis to explore the mechanism of Na(+) and H(+) exchange and its regulation by pH. However, the dynamics and nature of the pH-induced changes in the proteins remained unknown. Using molecular mechanics methods, we studied the dynamic behavior of the hydrogen-bonded network in NhaA on shifting the pH from 4 to 8. The helical regions preserved the general architecture of NhaA throughout the pH change. In contrast, large conformational drifts occurred at pH 8 in the loop regions, and an increased flexibility of helix IVp was observed on the pH shift. A remarkable pH-induced conformational reorganization was found: at acidic pH helix X is slightly curved, whereas at alkaline pH, it is kinked around residue Lys(300). The barrier that exists between the cytoplasmic and periplasmic funnels at low pH is removed, and the two funnels are bridged by hydrogen bonds between water molecules and residues located in the TMSs IV/XI assembly and helix X at alkaline pH. In the variant Gly(338)Ser that lost pH control, a hydrogen-bonded chain between Ser(338) and Lys(300) was found to block the pH-induced conformational reorganization of helix X.  相似文献   

13.
Digestion with trypsin of purified His-tagged NhaA in a solution of dodecyl maltoside yields two fragments at alkaline pH but only one fragment at acidic pH. Determination of the amino acid sequence of the N terminus of the cleavage products show that the pH-sensitive cleavage site of NhaA, both in isolated everted membrane vesicles as well as in the pure protein in detergent, is Lys-249 in loop VIII-IX, which connects transmembrane segment VIII to IX. Interestingly, the two polypeptide products of the split antiporter remain complexed and co-purify on Ni(2+)-NTA column. Loop VIII-IX has also been found to play a role in the pH regulation of NhaA; three mutations introduced into the loop shift the pH profile of the Na(+)/H(+) antiporter activity as measured in everted membrane vesicles. An insertion mutation introducing Ile-Glu-Gly between residues Lys-249 and Arg-250 (K249-IEG-R250) and Cys replacement of either Val-254 (V254C) or Glu-241 (E241C) cause acidic shift of the pH profile of the antiporter by 0.5, 1, and 0.3 pH units, respectively. Interestingly, the double mutant E241C/V254C introduces a basic shift of more than 1 pH unit with respect to the single mutation V254C. Taken together these results imply the involvement of loop VIII-IX in the pH-induced conformational change, which leads to activation of NhaA at alkaline pH.  相似文献   

14.
The recently determined crystal structure of NhaA, the Na +/H + antiporter of Escherichia coli, showed that the previously constructed series of NhaA-alkaline phosphatase (PhoA) fusions correctly predicted the topology of NhaA's 12 transmembrane segments (TMS), with the C- and N-termini pointing to the cytoplasm. Here, we show that these NhaA-PhoA fusions provide an excellent tool for mapping the epitopes of three NhaA-specific conformational monoclonal antibodies (mAbs), of which two drastically inhibit the antiporter. By identifying which of the NhaA fusions is bound by the respective mAb, the epitopes were localized to small stretches of NhaA. Then precise mapping was conducted by targeted Cys scanning mutagenesis combined with chemical modifications. Most interestingly, the epitopes of the inhibitory mAbs, 5H4 and 2C5, were identified in loop X-XI (cytoplasmic) and loop XI-XII (periplasmic), which are connected by TMS XI on the cytoplasmic and periplasmic sides of the membrane, respectively. The revealed location of the mAbs suggests that mAb binding distorts the unique NhaA TMS IV/XI assembly and thus inhibits the activity of NhaA. The noninhibitory mAb 6F9 binds to the functionally dispensable C-terminus of NhaA.  相似文献   

15.
A single Cys replacement of Glu at position 252 (E252C) in loop VIII-IX of NhaA increases drastically the Km for Na(+) (50-fold) of the Na(+)/H(+) antiporter activity of NhaA and shifts the pH dependence of NhaA activity, by one pH unit, to the alkaline range. In parallel, E252C causes a similar alkaline pH shift to the pH-induced conformational change of loop VIII-IX. Thus, although both the Na(+)/H(+) antiporter activity of wild type NhaA and its accessibility to trypsin at position Lys(249) in loop VIII-IX increase with pH between pH 6.5 and 7.5, the response of E252C occurs above pH 8. Furthermore, probing accessibility of pure E252C protein in dodecyl maltoside solution to 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid revealed that E252C itself undergoes a pH-dependent conformational change, similar to position Lys(249), and the rate of the pH-induced conformational change is increased specifically by the presence of Na(+) or Li(+), the specific ligands of the antiporter. Chemical modification of E252C by N-ethylmaleimide, 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid; [2-(trimethylammonium)ethyl]methane thiosulfonate, or (2-sulfonatoethyl)methanethiosulfonate reversed, to a great extent, the pH shift conferred by E252C but had no effect on the K(m) of the mutant antiporter.  相似文献   

16.
Na(+)/H(+) antiporters are ubiquitous membrane proteins that are involved in homeostasis of H(+) and Na(+) throughout the biological kingdom. Corroborating their role in pH homeostasis, many of the Na(+)/H(+) antiporter proteins are regulated directly by pH. The pH regulation of NhaA, the Escherichia coli Na(+)/H(+) antiporter (EcNhaA), as of other, both eukaryotic and prokaryotic Na(+)/H(+) antiporters, involves a pH sensor and conformational changes in different parts of the protein that transduce the pH signal into a change in activity. Thus, residues that affect the pH response, the translocation or both activities cluster in separate domains along the antiporter molecules. Importantly, in the NhaA family, these domains are conserved. Helix-packing model of EcNhaA based on cross-linking data suggests, that in the three dimensional structure of NhaA, residues that affect the pH response may be in close proximity, forming a single pH sensitive domain. Therefore, it is suggested that, despite considerable differences in the primary structure of the antiporters from the bacterial NhaA to the mammalian NHEs, their three-dimensional architectures are conserved. Test of this possibility awaits the atomic resolution of the 3D structure of the antiporters.  相似文献   

17.
Using an electrophysiological assay the activity of NhaA was tested in a wide pH range from pH 5.0 to 9.5. Forward and reverse transport directions were investigated at zero membrane potential using preparations with inside-out and right side-out-oriented transporters with Na(+) or H(+) gradients as the driving force. Under symmetrical pH conditions with a Na(+) gradient for activation, both the wt and the pH-shifted G338S variant exhibit highly symmetrical transport activity with bell-shaped pH dependences, but the optimal pH was shifted 1.8 pH units to the acidic range in the variant. In both strains the pH dependence was associated with a systematic increase of the K(m) for Na(+) at acidic pH. Under symmetrical Na(+) concentration with a pH gradient for NhaA activation, an unexpected novel characteristic of the antiporter was revealed; rather than being down-regulated, it remained active even at pH as low as 5. These data allowed a transport mechanism to advance based on competing Na(+) and H(+) binding to a common transport site and a kinetic model to develop quantitatively explaining the experimental results. In support of these results, both alkaline pH and Na(+) induced the conformational change of NhaA associated with NhaA cation translocation as demonstrated here by trypsin digestion. Furthermore, Na(+) translocation was found to be associated with the displacement of a negative charge. In conclusion, the electrophysiological assay allows the revelation of the mechanism of NhaA antiport and sheds new light on the concept of NhaA pH regulation.  相似文献   

18.
NhaA, the Na(+)/H(+) antiporter of Escherichia coli, exists in the native membrane as a homodimer of which two monomers have been suggested to be attached by a beta-hairpin at the periplasmic side of the membrane. Constructing a mutant deleted of the beta-hairpin, NhaA/Delta(Pro(45)-Asn(58)), revealed that in contrast to the dimeric mobility of native NhaA, the mutant has the mobility of a monomer in a blue native gel. Intermolecular cross-linking that monitors dimers showed that the mutant exists only as monomers in the native membrane, proteoliposomes, and when purified in beta-dodecyl maltoside micelles. Furthermore, pull-down experiments revealed that, whereas as expected for a dimer, hemagglutinin-tagged wild-type NhaA co-purified with His-tagged NhaA on a Ni(2+)-NTA affinity column, a similar version of the mutant did not. Remarkably, under routine stress conditions (0.1 m LiCl, pH 7 or 0.6 m NaCl, pH 8.3), the monomeric form of NhaA is fully functional. It conferred salt resistance to NhaA- and NhaB-deleted cells, and whether in isolated membrane vesicles or reconstituted into proteoliposomes exhibited Na(+)/H(+) antiporter activity and pH regulation very similar to wild-type dimers. Remarkably, under extreme stress conditions (0.1 m LiCl or 0.7 m NaCl at pH 8.5), the dimeric native NhaA was much more efficient than the monomeric mutant in conferring extreme stress resistance.  相似文献   

19.
The activity of the NhaA Na+/H+ antiporter of Vibrio parahaemolyticus is inhibited by amiloride. We found an amino acid sequence in the NhaA that was identical to a putative amiloride binding domain of the Na+/H+ exchanger in mammalian cells. We constructed mutant NhaAs that had amino acid substitutions in the putative amiloride binding domain by site-directed mutagenesis. These include V62L (Val62 replaced by Leu), F63Y, F64Y, and L65F. Most mutant NhaAs showed decreased sensitivity for amiloride. Among these, the F64Y mutant NhaA showed the least amiloride sensitivity, with a Ki value 7 to 10 times greater than that in the wild type. Thus, the sequence between residues V62 and L65 in NhaA, especially F64, is very important for the inhibitory effect of amiloride on the antiporter.  相似文献   

20.
Two monovalent ion porters, the putative Na+/H+ antiporter (NapA) of Enterococcus hirae and the putative K+/H+ antiporter (KefC) of Escherichia coli, are similar in sequence throughout their hydrophobic domains. These two proteins, which comprise a novel family of transporters unrelated to the previously characterized Na+/H+ exchangers of E. coli (NhaA and NhaB) are proposed to function by essentially the same mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号