首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of ontogeny, light environment and species on relationships of relative growth rate (RGR) to physiological and morphological traits were examined for first-year northern hardwood tree seedlings. Three Betulaceae species (Betula papyrifera, Betula alleghaniensis and Ostrya virginiana) were grown in high and low light and Quercus rubra and Acer saccharum were grown only in high light. Plant traits were determined at four ages: 41, 62, 83 and 104 days after germination. In high light (610 mol m–2 s–1 PPFD), across species and ages, RGR was positively related to the proportion of the plant in leaves (leaf weight ratio, LWR; leaf area ratio, LAR), in situ rates of average canopy net photosynthesis (A) per unit mass (Amass) and per unit area (Aarea), and rates of leaf, stem and root respiration. In low light (127 mol m–2 s–1 PPFD), RGR was not correlated with Amass and Aarea whereas RGR was positively correlated with LAR, LWR, and rates of root and stem respiration. RGR was negatively correlated with leaf mass per area in both high and low light. Across light levels, relationships of CO2 exchange and morphological characteristics with RGR were generally weaker than within light environments. Moreover, relationships were weaker for plant parameters containing a leaf area component (leaf mass per area, LAR and Aarea), than those that were solely mass-based (respiration rates, LWR and Amass). Across light environments, parameters incorporating the proportion of the plant in leaves and rates of photosynthesis explained a greater amount of variation in RGR (e.g. LWR*Amass, R2=0.64) than did any single parameter related to whole-plant carbon gain. RGR generally declined with age and mass, which were used as scalars of ontogeny. LWR (and LAR) also declined for seven of the eight species-light treatments and A declined in four of the five species in high light. Decreasing LWR and A with ontogeny may have been partially responsible for decreasing RGR. Declines in RGR were not due to increased respiration resulting from an increase in the proportion of solely respiring tissue (roots and stems). In general, although LWR declined with ontogeny, specific rates of leaf, stem, and root respiration also decreased. The net result was that whole-plant respiration rates per unit leaf mass decreased for all eight treatments. Identifying the major determinants of variation in growth (e.g. LWR*Amass) across light environments, species and ontogeny contributes to the establishment of a framework for exploring limits to productivity and the nature of ecological success as measured by growth. The generality of these relationships both across the sources of variation we explored here and across other sources of variation in RGR needs further study.  相似文献   

2.
A survey of seasonal bark proteins in eight temperate hardwoods   总被引:1,自引:0,他引:1  
Summary Bark proteins of eight temperate hardwoods were analyzed by SDS-PAGE at monthly intervals to determine whether an accumulation of specific proteins, potential storage proteins, occurred in the fall at the time of leaf senescence. Storage proteins were identified as proteins that accumulated during the fall and were present in reduced amounts in the summer. Total protein levels were higher in the winter than in the summer in Fagus sylvatica, Fraxinus americana, Tilia americana, Alnus glulinosa, Betula papyrifera and Querus rubra, but not in Gleditsia triacanthos or Robinia pseudoacacia. Betula contained the most abundant storage protein, although in all species minor bands, which fluctuated seasonally, could be identified. With the exception of Alnus and Betula, results generally correlated with previous microscopy studies of these tree species, which showed varying amounts of protein storage vacuoles present in phloem parenchyma cells during the winter, but not during the summer.  相似文献   

3.
Diurnal and seasonal changes in plant water potential, leaf diffusion resistance, and stem radial changes of Acer saccharum and Betula papyrifera trees were studied in northern Wisconsin during the 1974 and 1975 growing seasons. Water potential decreased during the day, following relatively high values in the morning, and increased in the late afternoon and evening. Diurnal patterns and actual values of water potential varied with species, soil water availability, and factors influencing transpiration (e.g., solar radiation, vapor pressure deficit, and transpiration flux density). When plant water deficits were not severe, leaf resistance of both species was rather stable during the day. During severe droughts, however, leaf resistance increased (stomata closed) during the day when light intensity was high. Leaf resistance at high light intensity was higher in Acer than in Betula. Stomatal closure with decreasing light intensity varied between species and among Acer trees. Tree stems of both species shrank during the day, as internal water deficits developed, and they expanded as trees rehydrated during the night. Stems of Acer shrank more than those of Betula. The amount of daily stem shrinkage increased as the season progressed if the trees were not under severe water deficits. During severe droughts the amount of diurnal stem shrinkage decreased. Shrinkage of stems lagged behind water potential changes by 1 to 2 h in Acer and less than 1 h in Betula. The relationship between stem radius and leaf water potential was not constant throughout the growing season.  相似文献   

4.
A two-component model of growth and maintenance respiration is used to study the response of northern red oak (Quercus rubra L.) seedlings and 32-year-old trees to sub-ambient (10 μmol h; cumulative dose based on 7 h daily mean), ambient (43 μmol h), and twice-ambient (85 μmolh) ozone. The relative growth rates (RGR) of leaves sampled from seedlings and trees were similar across treatments, as were specific leaf respiration rates (SRR). Growth coefficients estimated from the SRR versus RGR relationship averaged 25-3 mol CO2 kg?1 leaf dry mass produced for seedlings and 21-5 mol kg?1 for trees. Maintenance coefficients ranged from 0-89 to 1-07 mol CO2 kg?1 leaf dry mass d?1 for seedlings and from 0-64 to 0-84 mol kg-1 d?1 for trees. Neither coefficient was affected by ozone. Leaves sampled throughout the growing season also showed little response of respiration to ozone. This occurred despite a 30% reduction in net photosynthesis for trees grown at twice-ambient ozone. These results suggest that growth and maintenance respiration in young northern red oak leaves are not affected by ozone and that in older leaves injury can occur without a parallel increase in so-called ‘maintenance’ respiration.  相似文献   

5.
Kitao  M.  Lei  T.T.  Koike  T. 《Photosynthetica》1999,36(1-2):31-40
The effects of four manganese (Mn) concentrations (1, 10, 50, and 100 g m-3 = Mn1, Mn10, Mn50, Mn100) in solution culture on growth variables were studied for seedlings of five deciduous broad-leaved trees with different successional characteristics and shoot development patterns in northern Japan. The five species were: Betula ermanii, Betula platyphylla var. japonica, and Alnus hirsuta (early-successional species with continuous leaf development), Ulmus davidiana var. japonica (mid-successional species with flush and continuous leaf development), and Acer mono (late-successional species with a flush type leaf development). In plants grown in the Mn environment for about 45 d, relative growth rate (RGR) decreased with increasing Mn supply. Between the 1 and 100 g(Mn) m-3, RGR decreased by 20 % for B. ermanii and B. platyphylla, by 40 % for A. hirsuta and A. mono, and by 80 % for U. davidiana. Specific leaf area (SLA) and leaf mass ratio (LMR) of all species were little affected by high Mn supply. In U. davidiana, however, there was a 67 % decrease in LMR in Mn100 plants. Leaf area ratio (LAR) was higher in early-successional species than in mid- and late-successional ones but differed little among Mn treatments within species, except for U. davidiana where LAR declined substantially with increased Mn supply. While LAR, which represents the relative size of assimilatory apparatus, was little affected, net photosynthetic rate (PN) saturated with radiant energy decreased with increasing Mn supply in all species. Thus PN was adversely affected by high accumulation of Mn in leaves, which resulted in an overall reduction in biomass production. However, the proportional allocation of photosynthates to the assimilatory apparatus was not affected by different Mn toxicity in hardwood tree seedlings. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

6.
A study of restriction fragment polymorphisms of ribosomal DNA among seven actinorhizal species (Alnus spp.) and a non-actinorhizal species (Betula papyrifera Marsh.) of the Betulaceae was conducted, using a simple method for the extraction of high molecular weight restrictable nuclear DNA from leaf tissues of perennial angiosperms and nine restriction endonucleases. rDNA restriction fragments were variable within and among the species studied, and the variation noted was used to calculate the similarities and infer phenetic relationships among these members of the Betulaceae. The results confirmed the taxonomy of alder based on morphological characters, showing a clear clustering of the species ofAlnus sampled in each of the two different subgeneraAlnus andAlnobetula. Within each subgenus, the closely related taxa often classified as subspecies by their similar morphology and their ability to interhybridize, were similarly shown by restriction fragment polymorphisms to be more closely related to each other than to any other taxon. The analysis also suggested that some alder species may not be more divergent fromBetula papyrifera than from other alder species.  相似文献   

7.
Summary Seedlings of paper birch (Betula papyrifera Marsh.), green ash (Fraxinus pennsylvanica Marsh.), and red pine (Pinus resinosa Ait.) fumigated with 0.2 ppm SO2 for 30 h at 30° C had higher leaf diffusive conductances (LDC) and absorbed more sulfur than seedlings fumigated at 12° C. Comparisons among the three species fumigated at the same temperature, however, do not support the view that a plant with higher LDC should absorb more SO2 than a plant with lower LDC. Mean relative growth rates ( ) of seedlings grown at 21° C after fumigation were variously affected by SO2. of green ash was not inhibited by SO2, but of roots of red pine seedlings was reduced by SO2, with greater inhibition in seedlings fumigated at 30° C. Root and shoot of paper birch seedlings were lowered by SO2, and effects of SO2 were about equal at both exposure temperatures. The data indicate that temperature can affect mechanisms of SO2 avoidance, tolerance, or both to various degrees in different species. Thus generalizations on the influence of exposure temperature on resistance of plants to SO2 may be inappropriate.Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison.  相似文献   

8.
Factors constraining the geographic ranges of broadleaf tree species in eastern North America were examined in common gardens along a ~1500 km latitudinal transect travers in grange boundaries of four target species: trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) to the north vs. eastern cottonwood (Populus deltoides) and sweet gum (Liquidambar styraciflua) to the south. In 2006 and 2007, carbon‐use efficiency (CUE), the proportion of assimilated carbon retained in biomass, was estimated for seedlings of the four species as the quotient of relative growth rate (RGR) and photosynthesis per unit tree mass (Atree). In aspen and birch, CUE and RGR declined significantly with increasing growth temperature, which spanned 9 °C across gardens and years. The 37% (relative) CUE decrease from coolest to warmest garden correlated with increases in leaf nighttime respiration (Rleaf) and the ratio of Rleaf to leaf photosynthesis (R%A). For cottonwood and sweet gum, however, similar increases in Rleaf and R%A accompanied modest CUE declines, implying that processes other than Rleaf were responsible for species differences in CUE's temperature response. Our findings illustrate marked taxonomic variation, at least among young trees, in the thermal sensitivity of CUE, and point to potentially negative consequences of climate warming for the carbon balance, competitive ability, and persistence of two foundation species in northern temperate and boreal forests.  相似文献   

9.
A suite of functionally-related characters and demography of three species of Neotropical shadeadapted understory shrubs (Psychotria, Rubiaceae) were studied in the field over five years. Plants were growing in large-scale irrigated and control treatments in gaps and shade in old-growth moist forest at Barro Colorado Island, Panama. Irrigation demonstrated that dry-season drought limited stomatal conductance, light saturated photosynthesis, and leaf longevity in all three species. Drought increased mortality of P. furcata. In contrast, irrigation did not affect measures of photosynthetic capacity determined with an oxygen electrode or from photosynthesis-CO2 response curves in the field. Drought stress limited field photosynthesis and leaf and plant survivorship without affecting photosynthetic capacity during late dry season. Leaves grown in high light in naturally occurring treefall gaps had higher photosynthetic capacity, dark respiration and mass per unit area than leaves grown in the shaded understory. P. furcata had the lowest acclimation to high light for all of these characters, and plant mortality was greater in gaps than in shaded understory for this species. The higher photosynthetic capacity of gap-grown leaves was also apparent when photosynthetic capacity was calculated on a leaf mass basis. Acclimation to high light involved repackaging (higher mass per unit leaf area) as well as higher photosynthetic capacity per unit leaf mass in these species. The three species showed two distinct syndromes of functionally-related adaptations to low light. P. limonensis and P. marginata had high leaf longevity (3 years), high plant survivorship, low leaf nitrogen content, and high leaf mass per unit area. In contrast, P. furcata had low leaf survivorship (1 year), high plant mortality (77–96% in 39 months), low leaf mass per unit area, high leaf nitrogen content, and the highest leaf area to total plant mass; the lowest levels of shelf shading, dark respiration and light compensation; and the highest stem diameter growth rates. This suite of characters may permit higher whole-plant carbon gain and high leaf and population turnover in P. furcata. Growth in deep shade can be accomplished through alternative character syndromes, and leaf longevity may not be correlated with photosynthetic capacity in shade adapted plants.  相似文献   

10.
A whole-plant carbon balance model incorporating a light acclimation response was developed for Alocasia macrorrhiza based on empirical data and the current understanding of light acclimation in this species. The model was used to predict the relative growth rate (RGR) for plants that acclimated to photon flux density (PFD) by changing their leaf type, and for plants that produced only sun or shade leaves regardless of PFD. The predicted RGR was substantially higher for plants with shade leaves than for those with sun leaves at low PFD. However, the predicted RGR was not higher, and in fact was slightly lower, for plants with sun leaves than for those with shade leaves at high PFD. The decreased leaf area ratios (LARs) of the plants with sun leaves counteracted their higher photosynthetic capacities per unit leaf area (Amax). The model was manipulated by changing parameters to examine the sensitivity of RGR to variation in single factors. Overall, RGR was most sensitive to LAR and showed relatively little sensitivity to variation in Amax or maintenance respiration. Similarly, RGR was relatively insensitive to increases in leaf life-span beyond those observed. Respiration affected RGR only at low PFD, whereas Amax was moderately important only at high PFD.  相似文献   

11.
Summary Stomata of paper birch (Betula papyrifera Marsh.) seedlings were more open at high humidity than at low humidity and responded rapidly to changes in vapor pressure deficit. SO2 at 0.2 or 0.8 l l-1 caused partial stomatal closure. Seedlings fumigated with SO2 at 0.2 or 0.5 l l-1 for 30 h or 0.2 l l-1 for 75 h took up more SO2 at high than at low humidity. Differences in pollutant uptake could be explained by stomatal conductance with no need to invoke changes in mesophyll conductance. Betula seedlings were more sensitive to SO2 when fumigated at high humidity, as manifested in more leaf necrosis, increased leaf abscission, and greater growth inhibition compared to seedlings fumigated at low humidity. Amount of injury to leaves increased with rate of SO2 uptake, and inhibition of root growth increased with total SO2 uptake.Abbreviations RH relative humidity - VPD vapor pressure deficit - RGR mean relative growth rate - PPFD photosynthetic photon flux density (400–700 nm) - LDC leaf diffusive conductance - water potential Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison  相似文献   

12.
Photosynthetic characteristics, leaf longevity and biomass accumulation of a threatened herb species, Arisaema heterophyllum, were studied in the understory of a riparian forest and at a neighboring deforested open site for 3 years in order to understand the combined effects of light and water availability. Light availability was 2- to 4-fold higher at the deforested than at the forest site during the growing season of the species, and precipitation varied considerably over the 3 years. Despite the difference in water availability among the years (dry in 1994 and 1996, and wet in 1995), the species showed a strong acclimation to the different light environments. Light-saturated assimilation rate on a leaf area basis, leaf mass area ratio (LMA), and relative growth rate (RGR) were all higher at deforested site. While a positive correlation between individual RGR and microsite light availability was found in the wet year, no correlation was found in the dry years, and mean RGR was significantly lower in the dry year at both sites. Leaf longevity, photosynthetic capacity on a leaf mass basis, dark respiration rate, and leaf conductance, varied considerably from year to year, especially in the plants at the open site, probably depending on water availability. In the dry years plants at the deforested sites showed a lower photosynthetic rate and leaf conductance under unwatered than under watered conditions. These results suggest that the water availability in a given year may strongly affect light acclimation and annual RGR of the herb species in natural habitats, even under mesic climate conditions. Received: 15 February 1997 / Accepted: 20 May 1997  相似文献   

13.
High-latitude peatlands are important soil carbon sinks. In these ecosystems, the mineralization of carbon and nitrogen are constrained by low temperatures and low nutrient concentrations in plant litter and soil organic matter. Global warming is predicted to increase soil N availability for plants at high-latitude sites. We applied N fertilizer as an experimental analogue for this increase. In a three-year field experiment we studied N fertilization effects on leaf litter decomposition and N dynamics of the four dominant plant species (comprising >75% of total aboveground biomass) in a sub-arctic bog in northern Sweden. The species were Empetrum nigrum (evergreen shrub), Eriophorum vaginatum (graminoid), Betula nana (deciduous shrub) and Rubus chamaemorus (perennial forb). In the controls, litter mass loss rates increased in the order: Empetrum < Eriophorum < Betula < Rubus. Increased N availability had variable, species-specific effects: litter mass loss rates (expressed per unit litter mass) increased in Empetrum, did not change in Eriophorum and Betula and decreased in Rubus. In the leaf litter from the controls, we measured no or only slight net N mineralization even after three years. In the N-fertilized treatments we found strong net N immobilization, especially in Eriophorum and Betula. This suggests that, probably owing to substantial chemical and/or microbial immobilization, additional N supply does not increase the rate of N cycling for at least the first three years.  相似文献   

14.
Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests. Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs) of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25 and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those characterized by relatively high levels of disturbance. Received: 30 December 1997 / Accepted: 1 September 1998  相似文献   

15.
The decomposition of deciduous leaf material provides a critical source of energy to aquatic food webs. Changes to riparian forests through harvesting practices may alter the species composition of deciduous leaf material entering streams. We compared over-winter decomposition of three different riparian leaf species (speckled alder (Alnus incana ssp. rugosa (Du Roi) J. Clausen), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.)) to determine their importance as a food resource for macroinvertebrate communities within Boreal Shield streams in northeastern Ontario, Canada. Leaf pack decomposition of the three leaf species formed a processing continuum throughout winter, where alder and birch leaf packs decomposed at a medium rate (k = 0.0065/day and 0.0053/day, respectively) and aspen leaf packs decomposed more slowly (k = 0.0035/day). Macroinvertebrate community colonization on leaf packs changed through time regardless of leaf species. Alder leaf packs supported higher abundances of macroinvertebrates in the fall while aspen leaf packs supported greater shredder abundances in the following spring. The study shows that leaf diversity may be important for providing a sustained food resource for aquatic macroinvertebrates throughout the relatively long over-winter period in Canadian Boreal Shield streams. Riparian forest management strategies should ensure that deciduous plant species richness is sustained in riparian areas.  相似文献   

16.
In cold‐temperate ecosystems of the upper Great Lakes Region, evergreen conifer‐dominated forests were once common. As a result of past management practices, early‐successional deciduous forests now dominate the landscape. Embedded in this matrix are stands of shade‐tolerant conifers, including Thuja occidentalis. For the past several decades, large‐scale T. occidentalis regeneration in remnant T. occidentalis and adjacent Betula papyrifera forests has not occurred. Using a combination of restoration experiments and field surveys at three study sites on the Lake Superior Highlands, Minnesota, U.S.A., we examined safe sites for T. occidentalis regeneration under both Thuja and Betula canopy types. This study focused on the colonization and establishment phases of regeneration, differentiating among safe‐site components for T. occidentalis. Seedbed type determined colonization success, with higher rates on conifer logs than on B. papyrifera logs, mounds, or pits. Mortality rates for seedlings on natural decayed wood seedbeds were higher under Thuja canopy than under Betula canopy, but the reverse was true for seedlings on manipulated seedbeds, suggesting that seedbed type was more important than the dominant canopy type. Growth rates for seedlings on moved log segments were greater under the Betula than the Thuja canopy type, but seedlings on natural decayed wood seedbeds did not exhibit this difference. Results indicated that T. occidentalis regeneration was more limited in Betula forest by seedbed availability, while in Thuja forest canopy conditions were more limiting.  相似文献   

17.
T. R. Crow 《Oecologia》1992,91(2):192-200
Summary I studied the survival and development of a 1986 cohort of northern red oak (Quercus rubra L.) seedlings growing under a variety of overstory and microsite conditions in a northern hardwood forest dominated by northern red oak, red maple (Acer rubrum L.) paper birch (Betula papyrifera Marsh.), and scattered white pine (Pinus strobus L.). Fifty naturally regenerating seedlings of oak were randomly selected in each of three canopy classes: no overstory, partial overstory, and complete overstory. Growth and mortality were measured for six years. Seedling height growth decreased with overstory density, with less growth evident with even a partial overstory. Seedling survival also declined with overstory density and depended on microtopography to a lesser extent. After six years, 92% of the seedlings survived in the open, compared to 54% under the partial overstory, and 36% under the complete overstory. The open environment, in which woody and herbaceous regrowth formed a low canopy reducing light intensities to about 50% of full sunlight, provided a favorable site for the growth and survival of northern red oak.  相似文献   

18.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature), even when grown at different temperatures, a phenomenon referred to as respiratory homeostasis. The underlying mechanisms and ecological importance of this respiratory homeostasis are not understood. In order to understand this, root respiration and plant growth were investigated in two wheat cultivars (Triticum aestivum L. cv. Stiletto and cv. Patterson) with a high degree of homeostasis, and in one wheat cultivar (T. aestivum L. cv. Brookton) and one rice cultivar (Oryza sativa L. cv. Amaroo) with a low degree of homeostasis. The degree of homeostasis (H) is defined as a quantitative value, which occurs between 0 (no acclimation) and 1 (full acclimation). These plants were grown hydroponically at constant 15 or 25 °C. A good correlation was observed between the rate of root respiration and the relative growth rates (RGR) of whole plant, shoot or root. The plants with high H showed a tendency to maintain their RGR, irrespective of growth temperature, whereas the plants with low H grown at 15 °C showed lower RGR than those grown at 25 °C. Among several parameters of growth analysis, variation in net assimilation rate per shoot mass (NARm) appeared to be responsible for the variation in RGR and rates of root respiration in the four cultivars. The plants with high H maintained their NARm at low growth temperature, but the plants with low H grown at 15 °C showed lower NARm than those grown at 25 °C. It is concluded that respiratory homeostasis in roots would help to maintain growth rate at low temperature due to a smaller decrease in net carbon gain at low temperature. Alternatively, growth rate per se may control the demand of respiratory ATP, root respiration rates and sink demands of photosynthesis. The contribution of nitrogen uptake to total respiratory costs was also estimated, and the effects of a nitrogen leak out of the roots and the efficiency of respiration on those costs are discussed.  相似文献   

19.
This study examined the effects of CO2 and light availability on sapling growth and foliar chemistry, and consequences for insect performance. Quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), and sugar maple (Acer saccharum Marsh.) were grown in controlled environment greenhouses under ambient or elevated CO2 (38.7 and 69.6 Pa), and low or high light availability (375 and 855 μmol m−2 s−1). Because CO2 and light are both required for carbon assimilation, the levels of these two resources are expected to have strong interactive effects on tree growth and secondary metabolism. Results from this study support that prediction, indicating that the relative effect of rising atmospheric CO2 concentrations on the growth and secondary metabolism of deciduous trees may be dependent on light environment. Trees in ambient CO2-low light environments had substantial levels of phytochemicals despite low growth rates; the concept of basal secondary metabolism is proposed to explain allocation to secondary metabolites under growth-limiting conditions. Differences between CO2 and light effects on the responses of growth and secondary metabolite levels suggest that relative allocation is not dependent solely on the amount of carbon assimilated. The relative growth rates and indices of feeding efficiency for gypsy moth (Lymantria dispar L.) larvae fed foliage from the experimental treatments showed no significant interactive effects of light and CO2, although some main effects and many host species interactions were significant. Gypsy moth performance was negatively correlated with CO2- and light-induced increases in the phenolic glycoside content of aspen foliage. Insects were not strongly affected, however, by treatment differences in the nutritional and secondary chemical components of birch and maple. Received: 15 July 1998 / Accepted: 23 December 1998  相似文献   

20.
Kaoru Kitajima 《Oecologia》1994,98(3-4):419-428
Among 13 tropical tree species on Barro Colorado Island, species with high seedling mortality rates during the first year in shade had higher reltive growth rates (RGR) from germination to 2 months in both sun (23% full sun) and shade [2%, with and without lowered red: far red (R:FR) ratio] than shade tolerant species. Species with higher RGR in sun also had higher RGR in shade. These interspecific trends could be explained by differences in morphological traits and allocation paterns among species. Within each light regime, seedlings of shade-intolerant species had lower root: shoot ratios, higher leaf mass per unit area, and higher leaf area ratios (LAR) than shade tolerant species. In contrast, leaf gas exchange characteristics, or acclimation potential in these traits, had no relationship with seedling mortality rates in shade. In both shade tolerant and intolerant species, light saturated photosynthesis rates, dark respiration, and light compensation points were higher for sungrown seedlings than for shade-grown seedlings. Differences in R:FR ratio in shade did not affect gas exchange, allocation patterns, or growth rates of any species. Survival of young tree seedlings in shade did not depend on higher net photosynthesis or biomass accumulation rates in shade. Rather, species with higher RGR died faster in shade than species with lower RGR. This trend could be explained if survival depends on morphological characteristics likely to enhance defense against herbivores and pathogens, such as dense and tough leaves, a well-established root system, and high wood density. High construction costs for these traits, and low LAR as a consequence of these traits, should result in lower rates of whole-plant carbon gain and RGR for shade tolerant species than shade-intolerant species in shade as well as in sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号