首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A bioluminescent bioreporter for the detection of the microbial volatile organic compound p-cymene was constructed as a model sensor for the detection of metabolic by-products indicative of microbial growth. The bioreporter, designated Pseudomonas putida UT93, contains a Vibrio fischeri luxCDABE gene fused to a p-cymene/p-cumate-inducible promoter derived from the P. putida F1 cym operon. Exposure of strain UT93 to 0.02–850 ppm p-cymene produced self-generated bioluminescence in less than 1.5 h. Signals in response to specific volatile organic compounds (VOCs) such as m- and p-xylene and styrene, also occurred, but at two-fold lower bioluminescent levels. The bioreporter was interfaced with an integrated-circuit microluminometer to create a miniaturized hybrid sensor for remote monitoring of p-cymene signatures. This bioluminescent bioreporter integrated-circuit device was capable of detecting fungal presence within approximately 3.5 h of initial exposure to a culture of p-cymene-producing Penicillium roqueforti.  相似文献   

2.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4 h–1 when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 16S-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

3.
Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.  相似文献   

4.
Detection of very low light levels arising from individual cells of the naturally bioluminescent bacterium Vibrio fischeri as well as from a luminescence-marked Pseudomonas putida strain was achieved by the aid of two different camera systems. Using a liquid nitrogen-cooled slow-scan CCD (charge-coupled device) camera we were able to detect single-cell bioluminescence within 1 min, and the pictures obtained were of good resolution. In contrast, employing a photon-counting video camera we were able to detect bioluminescent cells within 10 seconds, but at the expense of spatial resolution. This study demonstrates the feasibility of microscopic single cell analysis employing bioluminescence as reporter system. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
The applicability of transgenic plants and plant growth-promoting bacteria to improve plant biomass accumulation as a phytoremediation strategy at a nickel (Ni)-contaminated field site was examined. Two crops of 4-day old non-transformed and transgenic canola (Brassica napus) seedlings in the presence and absence of Pseudomonas putida strain UW4 (crop #1) or P. putida strain HS-2 (crop #1 and 2) were transplanted at a Ni-contaminated field site in 2005. Overall, transgenic canola had increased growth but decreased shoot Ni concentrations compared to non-transformed canola, resulting in similar total Ni per plant. Under optimal growth conditions (crop #2), the addition of P. putida HS-2 significantly enhanced growth for non-transformed canola. Canola with P. putida HS-2 had trends of higher total Ni per plant than canola without P. putida HS-2, indicating the potential usefulness of this bacterium in phytoremediation strategies. Modifications to the planting methods may be required to increase plant Ni uptake.  相似文献   

6.
Induction of the expression of the 8-endotoxin gene fromBacillus thuringiensis var.tenebrionis in the recombinant strainPseudomonas putida IPM-36 negatively affected the viability and the growth rate of the culture. In order to optimize the insecticide production by the recombinant strain, mutant clones exhibiting anticipating growth on an inducer-containing medium were selected and studied. These clones differed in such aspects as the localization of mutations (either in plasmid pBTN11, carrying thecry3A gene, or in the chromosome), growth rate, or the level of δ-endotoxin synthesis after induction. Several obtained mutants proved much superior toP. putida IPM-36 in their structural and segregation stability, although they were as efficient as the original strain with respect to the production of the insecticide protein Cry3A.  相似文献   

7.
In appropriate environments containing 2-monochloropropionic acid (2MCPA), mutations in a population of nondehalogenatingPseudomonas putida, strain PP40-040 (parent population), resulted in the formation of 2mcpa+ papillae as a result of the decryptification of adehII gene. Increasing the size of the parent population, for example by increasing the availability of a metabolizable substrate such as succinate or lactate, increased the number of 2mcpa+ papillae formed because there were more parent cells available for mutation to the 2mcpa+ phenotype. The presence of a dehalogenating population, such asP. putida strain PP3, in close proximity to the non-dehalogenating population, also increased the number of 2mcpa+ papillae formed. This was due to the excretion of dehalogenases into the growth medium, which caused localized dehalogenation of the available 2MCPA, yielding a metabolizable substrate. This substrate stimulated the growth of the non-dehalogenating population, in turn increasing the number of 2mcpa+ papillae formed. Barriers, such as dialysis membranes, which prevented the excretion of the dehalogenases into the growth medium, prevented the stimulation of 2mcpa+ papillae formation by preventing release of metabolizable substrates from 2MCPA breakdown. Cell-free extracts (CFE) from dehalogenase-producing populations had a similar effect for the same reason. CFE without dehalogenase activity or in which the dehalogenase activity had been destroyed by heating failed to stimulate parent population growth and 2mcpa+ papillae formation. In the case ofPseudomonas putida strain PP3, which carries an easily transposed dehalogenase-encoding transposon, treatment of CFE with DNAase eliminated an additional factor involved in the formation of 2mcpa+ papillae.The authors are with the School of Pure and Applied Biology, University of Wales-Cardiff, P.O. Box 915, Cardiff CF1 3TL, UK  相似文献   

8.
Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.  相似文献   

9.
Summary The mechanism of antimicrobial action of hexahydro-1,3,5-triethyl-s-triazine (HHTT) was studied using the HHTT-resistant isolate,Pseudomonas putida 3-T-152, its HHTT-sensitive, novobiocin-cured derivative,P. putida 3-T-152 11:21,P. putida ATCC 12633,Pseudomonas aeruginosa PA01 andEscherichia coli J53 (RP4). HHTT was oxidized byP. putida 3-T-152, while respiration ofP. putida 3-T-152 11:21 was inhibited by HHTT. Chemical assays showed that HHTT released formaldehyde.P. putida 3-T-152 was highly resistant to formaldehyde, whileP. putida 3-T-152 11:21 was highly sensitive to formaldehyde. Both HHTT and formaldehyde acted similarly to inhibit proline uptake in bacterial cells and to inhibit the synthesis of the inducible enzymes, -galactosidase and glucose-6-phosphate dehydrogenase. HHTT did not have uncoupler-like activity.P. putida 3-T-152 used either HHTT or ethylamine, a component of HHTT, as a nitrogen source for growth, but neither HHTT, ethylamine or formaldehyde served as a carbon and energy source for growth. We concluded that a major mechanism of antimicrobial action of HHTT was through its degradation product, formaldehyde.  相似文献   

10.
Summary The response of a pollutant-degrading bacterium P. putida CP1 to stresses was investigated. The growth on the mono-chlorophenols resulted in a decrease in dry weight of the organism, although there was an increase in cell number. There was a change of bacterial shape from rod to round as well as the reduction of cell size when grown on phenol and chlorophenols. Changes in cell shape and size were also evident in glucose-free medium, which suggested that alteration of cell shape from rod to round as well as reduction of cell size were due to nutritional stress. The increase in cell number but a drop in dry weight correlated with the reduction of cell size and shape. The organism flocculated with chlorophenols but not with phenol. The cause of flocculation was due to the toxicity of chlorophenol. Isomerization of cis to trans forms of the unsaturated fatty acids in P. putida CP1 occurred under conditions of environmental stress. Trace amounts of the polyunsaturated fatty acid linoleic acid (cis-9, cis-12-octadecadienoic acid) rarely found in bacterial membranes and oleic acid (cis-9-octadecanoic acid), which is a typical product of aerobic fatty acid synthesis, were found in P. putida CP1.  相似文献   

11.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   

12.
InPseudomonas aeruginosa, the products of thexcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, thexcp genes of another fluorescent pseudomonad, the plant growth-promotingPseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e.,xcpP, Q, R, S, andT, with homology toxcp genes ofP. aeruginosa. Unlike the genetic organization inP. aeruginosa, where thexcp cluster consists of two divergently transcribed operons, thexcp genes inP. putida are all oriented in the same direction, and probably comprise a single operon. Upstream ofxcpP inP. putida, an additional open reading frame, with no homolog inP. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation ofxcp genes inP. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in thexcpQ andR genes ofP. aeruginosa could not be complemented by introduction of the correspondingxcp genes ofP. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third ofP. aeruginosa XcpR and the C-terminal two-thirds ofP. putida XcpR, did restore protein secretion in aP. aeruginosa xcpR mutant.  相似文献   

13.
Following transposon Tn5 mutagenesis of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, mutants that were able to grow in the presence of the tryptophan analog 5-fluorotryptophan were selected. Seven of the 50 5-fluorotryptophan-resistant mutants overproduced the phytohormone indoleacetic acid (IAA). Of these seven mutants, the highest level of IAA was observed with strain P. putida GR12-2/aux1, which produced four times the amount of indoleacetic acid synthesized by the wild-type strain. Strain P. putida GR12-2/aux1, in contrast to the wild type, lost the ability to stimulate the elongation of the roots of canola seedlings under gnotobiotic conditions. The growth rate, siderophore production, and 1-aminocyclopropane-1-carboxylate deaminase activity of mutant strain P. putida GR12-2/aux1 were identical to those of the wild-type strain. The role of IAA in the mechanism of plant growth stimulation by P. putida GR12-2 and other plant growth-promoting rhizobacteria is discussed.  相似文献   

14.
15.
Fluorescent Pseudomonas species are characterized by the production of pyoverdin-type siderophores for Fe3+ acquisition in iron-limited environments. Since it produces a structurally specific pyoverdin, Pseudomonas putida strain BTP1 could represent a valuable tool in an attempt to correlate the structural features of these compounds with some specificity in their two main properties i.e. affinity for iron and recognition rate by other Pseudomonas strains. An uncommonly high affinity for iron of the pyoverdin synthetized by P. putida BTP1 was observed by comparing both the apparent stability constant and the decomplexation kinetic of its ferric complex with those of ferripyoverdins from other strains. On another hand, results from growth stimulation experiments and labeled ferripyoverdin uptake assays highlighted the very low recognition rate of BTP1 isopyoverdins by membrane receptors of foreign strains. By contrast, P. putida BTP1 was able to utilize a broad spectrum of structurally unrelated exogenous pyoverdins by means of multiple receptors that are likely constitutively expressed in its outer membrane. The unusual traits of its pyoverdin-mediated iron acquisition system should contribute to enlarge the ecological competence of Pseudomonas putida BTP1 in terms of colonization and persistence in the rhizosphere.  相似文献   

16.
Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram‐negative bacteria, including mcl‐polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl‐PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non‐producing bacteria.  相似文献   

17.
Summary Conditional lethal (suicidal) genetic constructs were designed and employed in strains of Pseudomonads as models for containment of geneticallyengineerd microbes that may be deliberately released into the environment. A strain ofPseudomonas putida was formed with a suicide vector designated pBAP24h that was constructed by cloning the host killing gene (hok) into the RSF1010 plasmid pVDtac24 and placing it under the control of thetac promoter. Afterhok induction inP. putida only 40% of surviving cells continued to bear thehok sequences within 4 h of induction; in contrast, 100% of the cells in uninduced controls borehok. A few survivors that demonstrated resistance tohok-induced killing developed inP. putida, which may have been due to a mutation or physiological adaptation that rendered the membrane resistant tohok. Conditional lethal strains ofP. putida also were formed by insertinggef (a chromosomal homolog ofhok) under the control of thetac promoter into the chromosome using a transposon. Constructs with chromosomalgef, as well as an RK2-derived plasmid construct containinggef, were only marginally more stable than thehok constructs; they were effective in killingP. putida when induced and within 2 h post-induction killing from eithergef construct resulted in a 103–105-fold reduction in viable cell count compared to uninduced controls.  相似文献   

18.
Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d ‐glucose, d ‐xylose, l ‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d ‐xylose‐metabolizing strain P. putida KT2440_xylAB and l ‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.  相似文献   

19.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

20.
Biosurfactants are tensio-active agents that have often been proposed as a means to enhance the aqueous solubility of hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs). Biosurfactant-producing bacteria such as those belonging to the genus Pseudomonas might therefore enhance PAH availability to PAH-degrading bacteria. We tested the effects of two types of biosurfactants produced by Pseudomonas sp., cyclic lipopeptides and rhamnolipids, on phenanthrene bioavailability. Bioavailability was judged from growth rates on phenanthrene and from specific induction of a phenanthrene-responsive GFP-reporter in Burkholderia sartisoli strain RP037. Co-culturing of strain RP037 with the lipopeptide-producing bacterium Pseudomonas putida strain PCL1445 enhanced GFP expression compared to a single culture, but this effect was not significantly different when strain RP037 was co-cultivated with a non-lipopeptide-producing mutant of P. putida. The addition of partially purified supernatant extracts from the P. putida lipopeptide producer equally did not unequivocally enhance phenanthrene bioavailability to strain RP037 compared to controls. In contrast, a 0.1% rhamnolipid solution strongly augmented RP037 growth rates on phenanthrene and led to a significantly larger proportion of cells in culture with high GFP expression. Our data therefore suggest that biosurfactant effects may be strongly dependent on the strain and type of biosurfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号