首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of fluorinated keto-β-d-5-thioxylopyranonucleosides bearing thymine as the heterocyclic base have been designed and synthesized. Deprotection of 3-deoxy-3-fluoro-5-S-acetyl-5-thio-d-xylofuranose (1) and selective acetalation gave the desired isopropylidene 5-thioxylopyranose precursor 3. Acetylation and isopropylidene removal followed by benzoylation led to 3-deoxy-3-fluoro-1,2-di-Ο-benzoyl-4-O-acetyl-5′-thio-d-xylopyranose (6). This was condensed with silylated thymine and selectively deacetylated to afford 1-(2′-Ο-benzoyl-3′-deoxy-3′-fluoro-5′-thio-β-d-xylopyranosyl)thymine (8). Oxidation of the free hydroxyl group in the 4′-position of the sugar led to the formation of the target 4′-keto compound together with the concomitant displacement of the benzoyl group by an acetyl affording, 1-(2′-O-acetyl-3′-deoxy-3′-fluoro-β-d-xylopyranosyl-4′-ulose)thymine (9). Benzoylation of 3 and removal of the isopropylidene group followed by acetylation, furnished 3-deoxy-3-fluoro-1,2-di-Ο-acetyl-4-O-benzoyl-5′-thio-d-xylopyranose (12). Condensation of thiosugar 12 with silylated thymine followed by selective deacetylation led to the 1-(4′-Ο-benzoyl-3′-fluoro-5′-thio-β-d-xylopyranosyl)thymine (14). Oxidation of the free hydroxyl group in the 2′-position and concomitant displacement of the benzoyl group by an acetyl gave target 1-(4′-O-acetyl-3′-deoxy-3′-fluoro-β-d-xylopyranosyl-2′-ulose)thymine (15).  相似文献   

2.
The 3-deoxy-3-fluoro-6-S-(2-S-pyridyl)-6-thio-β-d-glucopyranosyl nucleoside analogs 7 were prepared via two facile synthetic routes. Their precursors, 3-fluoro-6-thio-glucopyranosyl nucleosides 5a-e, were obtained by the sequence of deacetylation of 3-deoxy-3-fluoro-β-d-glucopyranosyl nucleosides 2a-e, selective tosylation of the primary OH of 3 and finally treatment with potassium thioacetate. The desired thiolpyridine protected analogs 7a-c,f,g were obtained by the sequence of deacetylation of 5a-c followed by thiopyridinylation and/or condensation of the corresponding heterocyclic bases with the newly synthesized peracetylated 6-S-(2-S-pyridyl) sugar precursor 13, which was obtained via a novel synthetic route from glycosyl donor 12. None of the compounds 6 and 7 showed antiviral activity, but the 5-fluorouracil derivative 7c and particularly the uracil derivative 7b were endowed with an interesting and selective cytostatic action against a variety of murine and human tumor cell cultures.  相似文献   

3.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

4.
A series of quinoxaline azido reverse nucleosides 3a-c and their O-regioisomers 4a-c was prepared by reaction of quinoxaline 1a-c with 3-azido-3-deoxy-1,2-O-isopropylidene-5-p-toluenesulfonyl-D-ribofuranose (2) in the presence of sodium hydride. Structure modification of these interesting structures includes reduction and the subsequent acetylation reactions to give quinoxaline amino and acetyl amino reverse nucleosides and their O-regioisomers.  相似文献   

5.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

6.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

7.
Abstract

A practical synthetic method of d4T (3) from 5-methyluridine (2a) was developed. The Marumoto-Mansuri method was modified using 2′,3′-O-methoxy-ethylidene-5-methyluridine (10) as an intermediate to afford 1-(3,5-di-O-acetyl-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (6a) in high yield with less formation of by-products. The reaction mechanism was also discussed.

  相似文献   

8.
A series of new N′-[N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)thiocarbamoyl]-2-[(1-aryl-1H-tetrazol-5-yl)sulfanyl]acetohydrazides 5a5e were synthesized rapidly in high yields from 2-(1-aryl-1H-tetrazol-5-ylsulfanyl)acetohydrazides 3a3e and 2,3,4-tri-O-acetyl-β-d-xylopyranosyl isothiocyanate 4, then 5a5e were converted to a series of new 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-oxadiazole-2-amines 6a6e and 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-(2,3,4-tri-O-acetyl-β-d-xylopyranosyl)-1,3,4-thiadiazole-2-amines 7a7e, respectively under mercuric acetate/alcohol system or acetic anhydride/phosphoric acid system, then deacetylated in the solution of CH3ONa/CH3OH. All of the novel compounds were characterized by IR, 1H NMR, 13C NMR, MS and elemental analysis. The structures of compounds 2e, 3e, 5a and 5c have been determined by X-ray diffraction analysis. Some of the synthesized compounds displayed PTP1B inhibition and microorganism inhibition.  相似文献   

9.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

10.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

11.
The reaction of 1,2:5,6-di-O-isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (4) with mercuric azide in hot 50% aqueous tetrahydrofuran yielded, after reductive demercuration, 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-α-D-glucofuranose (5). Partial, acid hydrolysis of5 afforded the diol7, which gave 3-azido-3-deoxy-1,2-O-isopropylidene-5,6-di-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (8) on sulphonylation. On hydrogenation over a platinum catalyst and N-acetylation, the dimethanesulphonate 8 furnished 3,6-acetylepimino-3,6-dideoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (9), which was also prepared by an analogous sequence of reactions on 3-azido-3-deoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-6-O-toluene-p-sulphonyl-α-D-glucofuranose (13). The formation of the N-acetylepimine 9 establishes the D-gluco configuration for 5.1,2-O-Isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (20) reacted with mercuric azide in aqueous tetrahydrofuran at ≈85° to give 3,6-anhydro-1,2-O-isopropylidene-3-C-methyl-α-D-glucofuranose (22) as a result of intramolecular participation by the C-6 hydroxyl group in the initial intermediate.  相似文献   

12.
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells.  相似文献   

13.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

14.
Deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-α-L-talofuranoside (6) with sodium nitrite in 90% acetic acid at ≈0° gave methyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (8a) and methyl 6-deoxy-2,3-O-isopropylidene-β-D-allofuranoside (9a) (combined yield, 12.3%), the corresponding 5-acetates 8b (2.9%) and 9b (26.4%), and the unsaturated sugar methyl 5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-enofuranoside (10) (43.5%). Similar deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-β-D-allofuranoside (7) gave 8a and 9a (combined yield, 20.4%), 8b (12.5%), 9b (25.8%), 10 (7.7%), and the rearranged products 6-deoxy-2,3-O-isopropylidene-5-O-methyl-L-talofuranose (13a, 17.5%) and the corresponding 1-acetate 13b (14.1%). A synthesis of 13a was accomplished by successive methylation and debenzylation of the conveniently prepared benzyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (15b). Differences between the two sets of deamination products can be rationalized by assuming that the carbonium-ion intermediate reacts in the initial conformation assumed, before significant interconversion to other conformations occurs.  相似文献   

15.
Reinvestigation of the reaction of methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-α-d-lyxopyranoside (4) with azide ion has shown that methyl 4-deoxy-2,3-O-isopropylidene-β-l-erythro-pent-4-enopyranoside (8, ~51.5%) is formed, as well as the azido sugar 7 (~48.5%) of an SN2 displacement. The unsaturated sugar 8 was more conveniently prepared by heating the sulphonate 4 with 1,5-diazabicyclo-[5.4.0]undec-5-ene. An azide displacement on methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-β-l-ribopyranoside (12) furnished methyl 4-azido-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (13, ~66%) and the unsaturated sugar 14 (~28.5%), which was also prepared by heating the sulphonate with 1,5-diazabicyclo[5.4.0]undec-5-ene. Deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (5), prepared by reduction of 13, with sodium nitrite in 90% acetic acid at ~0°, yielded methyl 2,3-O-isopropylidene-α-d-lyxopyranoside (10a, 26.2%), methyl 2,3-O-isopropylidene-β-l-ribofuranoside (21a, 18.4%), and the corresponding acetates 10b (34.5%) and 21b (21.3%). These products are considered to arise by solvolysis of the bicyclic oxonium ion 29, formed as a consequence of participation by the ring-oxygen atom in the deamination reaction. Similar deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-β-l-ribopyranoside (6) afforded, exclusively, the products 10a (34.4%) and 10b (65.6%) of inverted configuration. Deamination of methyl 5-amino-5-deoxy-2,3-O-isopropylidene-β-d-ribofuranoside (20) gave 22ab, but no other products. An alternative synthesis of the amino sugars 5 and 6 is available by conversion of 10a into methyl 2,3-O-isopropylidene-β-l-erythro-pentopyranosid-4-ulose (11), followed by reduction of the derived oxime 15 with lithium aluminium hydride.  相似文献   

16.
Abstract

The reaction of the 2′,3′-lyxoepoxide (1) with ammonium azide gives two products; namely, the 3′-arabino azide (2a) and in low yield 2′-xylo azide (3a). After debenzoylation and reduction the resulting mixture of amines was resolved by chromatography on a weak cation exchanger, Amberlite IRC-50, and afforded crystalline 1-(3-amino-3-deoxy-β-D-arabinofuranosyl)uracil (2c) and 1-(2-amino-2-deoxy-β-D-xylofuranosyl)uracil (3c) in the ratio of 4:1.  相似文献   

17.
Abstract

Practical method to produce 2′,3′-dideoxypurinenucleosides from 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purines (1) was developed. High ratio of 2′,3′-dideoxynucleoside to 3′-deoxyribonucleoside was obtained by selecting the reaction conditions (solvent, pH and/or base), or changing 2′-acyloxy leaving group. The reaction mechanism was studied by deuteration experiments of 1a and 1-(3,5-di-O-acety1-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (12).

  相似文献   

18.
Base-labile 6-chloro-2,3,5-tri-O-acetylpurine riboside (1c) and 2-amino-6-chloro-2,3,5-tri-O-acetylpurine riboside (1d) were fully deacetylated through Candida antarctica B lipase hydrolysis, affording respectively 6-chloropurine riboside (2c) and 2-amino-6-chloro-purine riboside (2d). Quantitative results were found at pH 7 and 60 °C in 24 h for 1c and 72 h for 1d. This mild and simple enzymatic technique represents a convenient procedure for the removal of acetyl groups from such base labile halogenated nucleosides.  相似文献   

19.
ABSTRACT

The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N 2,O 3′,O 5′-triacetyl-2′-deoxy-2′-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5′-OH by a 4,4′-dimethoxytrityl group, this nucleoside component was converted to 2′-deoxy-2′-fluoroguanyl-(3′,5′)-guanosine (6c, GfpG).  相似文献   

20.
Variety of butyl [2-arylamino-4,4-dimethyl-6-oxo-cyclohex-1-ene]carbodithioates (3ac), 2-thioxo-6,7-dihydro-1H-benzo[d][1,3]thiazin-5(2H)-one derivatives (5ac), and the glucosyl carbodithioates 6ac as well as galactosyl carbodithioates 7ac have been synthesized from the reaction of enaminone derivatives 1ac with carbon disulfide followed by the alkylation with n-butyl bromide and α-d-glycosyl bromides, respectively. The amount of carbon disulfide plays a great role in the mode of reaction. The structures of the synthesized compounds were elucidated by spectral data and X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号