首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Non-native pathogens affect forests throughout North America, resulting in changes in species composition, structure, and ecosystem processes. We studied the effects of the emergent disease sudden oak death (SOD) and the resulting functional extinction of tanoak, a highly susceptible native tree with flammable litter, on future community flammability. We quantified four flammability metrics (flame height; flaming duration; smoldering duration; and fuel consumed) for litter from each of five species that co-occur with tanoak and for species mixtures with and without tanoak (n = 14). We combined these flammability metrics in a Principal Components Analysis to evaluate potential shifts in litter flammability from pre-SOD (with tanoak litter) to post-SOD (where tanoak was replaced equally with remaining species). Litter flammability changed following the loss of tanoak, but the differences were species- and community-specific. Mixed-evergreen fuels where coast Douglas-fir litter replaced tanoak experienced consistent declines in flammability. Few substantive changes occurred in communities where coast redwood or other hardwoods co-occurred. We found consistent synergistic flammability effects when multiple species’ litters were mixed; in cases where two or more species were mixed, most (75%) combinations burned with higher intensity (+8.1%) and fuelbeds flamed for a longer duration (+17.1%). Our work demonstrates that potential surface fire behavior in northwestern California may be dampened where Douglas-fir replaces tanoak, while those communities with other hardwoods or coast redwood may have redundant fuels and tanoak’s absence in future fires may be inconspicuous. These results underscore the potential for cascading effects of non-native pathogens on ecosystem function in fire-prone ecosystems.  相似文献   

2.
At fine spatial scales, savanna‐rainforest‐grassland boundary dynamics are thought to be mediated by the interplay between fire, vegetation and soil feedbacks. These processes were investigated by quantifying tree species composition, the light environment, quantities and flammability of fuels, bark thickness, and soil conditions across stable and dynamic rainforest boundaries that adjoin grassland and eucalypt savanna in the highlands of the Bunya Mountains, southeast Queensland, Australia. The size class distribution of savanna and rainforest stems was indicative of the encroachment of rainforest species into savanna and grassland. Increasing dominance of rainforest trees corresponds to an increase in woody canopy cover, the dominance of litter fuels (woody debris and leaf), and decline in grass occurrence. There is marked difference in litter and grass fuel flammability and this result is largely an influence of strongly dissimilar fuel bulk densities. Relative bark thickness, a measure of stem fire resistance, was found to be generally greater in savanna species when compared to that of rainforest species, with notable exceptions being the conifers Araucaria bidwillii and Araucaria cunninghamii. A transect study of soil nutrients across one dynamic rainforest – grassland boundary indicated the mass of carbon and nitrogen, but not phosphorus, increased across the successional gradient. Soil carbon turnover time is shortest in stable rainforest, intermediate in dynamic rainforest and longest in grassland highlighting nutrient cycling differentiation. We conclude that the general absence of fire in the Bunya Mountains, due to a divergence from traditional Aboriginal burning practices, has allowed for the encroachment of fire‐sensitive rainforest species into the flammable biomes of this landscape. Rainforest invasion is likely to have reduced fire risk via changes to fuel composition and microclimatic conditions, and this feedback will be reinforced by altered nutrient cycling. The mechanics of the feedbacks here identified are discussed in terms of landscape change theory.  相似文献   

3.
Climate change is increasing the frequency of extreme fires. In 2019–2020, extreme fires burned 97 000 km2 of native vegetation in south-eastern Australia, affecting many areas of rainforest, which has historically burned less frequently. One year post-fires, we surveyed litter macroinvertebrates in 52 temperate rainforest sites. Sites had experienced increasing levels of fire severity (unburnt, medium severity and high severity). We asked how fire severity affected: (1) litter macroinvertebrate habitats; (2) the abundance of litter macroinvertebrate taxa per unit area; and (3) abundance relative to litter habitat (volumetric density). We also estimated the loss of litter macroinvertebrates across rainforests in the study region. High severity burns supported only a fifth of the litter volume and canopy cover as unburnt sites, lower soil moisture and higher herb cover. Medium burns were intermediate. Macroinvertebrate abundance declined with burn severity: high severity burns supported only 26% of the abundance in unburnt sites; medium severity burns supported 80% of that in unburnt sites. Patterns were similar for all taxa, with millipedes declining most. High severity fires resulted in up to 1.90 million fewer macroinvertebrates per hectare; 0.53 million fewer per hectare of medium burn rainforest. Across the study region, we estimate that 60 billion fewer litter macroinvertebrates persisted in temperate rainforests alone. Volumetric densities of many litter macroinvertebrate taxa in high severity burns were marginally higher than in unburnt sites, suggesting nutrients may be more available post-fire, or that persisting individuals become concentrated in the leaf litter. For less desiccation-tolerant groups (e.g., amphipods), density declines with increasing severity may reflect the combined impact of low soil moisture and reduced litter cover. Many taxa persisted following high severity fires, but declines were substantial, and taxa differed in their vulnerability. Longer-term monitoring is required to understand the recovery trajectory and impacts on ecological function.  相似文献   

4.
Obligate seeder trees requiring high‐severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long‐lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High‐severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high‐severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest.  相似文献   

5.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.  相似文献   

6.
Invasive species can cause shifts in vegetation composition and fire regimes by initiating positive vegetation-fire feedbacks. To understand the mechanisms underpinning these shifts, we need to determine how invasive species interact with other species when burned in combination and thus how they may influence net flammability in the communities they invade. Previous studies using litter and ground fuels suggest that flammability of a species mixture is nonadditive and is driven largely by the more-flammable species. However, this nonadditivity has not been investigated in the context of plant invasions nor for canopy fuels. Using whole shoots, we measured the flammability of indigenous-invasive species pairs for six New Zealand indigenous and four globally invasive plant species, along with single-species control burns. Our integrated measure of flammability was clearly nonadditive, and the more-flammable species per pairing had the stronger influence on flammability in 83% of combinations. The degree of nonadditivity was significantly positively correlated with the flammability difference between the species in a pairing. The strength of nonadditivity differed among individual flammability components. Ignitability and combustibility were strongly determined by the more-flammable species per pair, yet both species contributed more equally to consumability and sustainability. Our results suggest mechanisms by which invasive species entrain positive vegetation-fire feedbacks that alter ecosystem flammability, enhancing their invasion. Of the species tested, Hakea sericea and Ulex europaeus are those most likely to increase the flammability of New Zealand ecosystems and should be priorities for management.  相似文献   

7.
Transects across the margins of rainforests with eucalypt forests at two sites in New South Wales are described. At Girard State Forest along ten transects it was consistently found that pure rainforest occurs where there is no evidence of past burning; and that rainforest tree species appear to be invading and replacing eucalypt forest through a formerly burned ecotone area. A similar pattern was found at Barrington Tops. It is suggested that adaptations shown by species of tall open forests which enable them to regenerate rapidly after burning may have evolved initially in a fire free, prehuman rainforest environment in response to other types of disturbance.  相似文献   

8.
The effect of fire frequency on the relative abundance of obligate-seeders and vegetative-regenerators was studied in 15 pairs of sites on the West Head, NSW. Each site pair consisted of a site which had been burnt frequently over the past 20 years and a nearby site which had been burnt less frequently. The data were collected in two phases. First, the relative abundance of the two overall groups of vegetative-regenerators and obligate-seeders was recorded by measuring the projective cover of live foliage. The presence or absence of particular species was then measured. For all the site pairs the projective cover of live foliage of obligate-seeders was dramatically less in the frequently burnt sites. Some obligate-seeder shrub species were absent from frequently burnt sites and the vegetation structure was simplified. In 11 of the 15 site pairs there was an increase in the projective cover of live foliage of vegetative-regenerators in the frequently burnt sites, while in the remaining four site pairs there were no significant differences between the infrequently and frequently burnt sites. Overall, the increases in the relative abundance of vegetative-regenerators made by high fire frequencies were not as large as the decreases in the relative abundance of obligate-seeders.  相似文献   

9.
Fire is frequently used as tool for land management in the Amazon, but often escapes into surrounding forests, with potentially severe impacts for forest biodiversity. We investigated the effects of single wildfires on ant communities in four geographically distinct regions of the Brazilian Amazon (Roraima, Pará, Acre and Mato Grosso) where forests had burned between 8 months and 10 years before our sampling. We established 7–12 transects, 500 m each, in burned and unburned forests in each region to investigate the effects of fire on forest structure and leaf litter ant communities, which were sampled using Winkler sacks. Fire effects on forest structure were more drastic in the most recently burned forests in Acre and Mato Grosso, while the impacts of older burns in Roraima and Pará were more subtle. Ant species richness was not different between burnt and unburned areas, but community composition differed between burned and control forests in all regions except Mato Grosso. At the species level, indicator species analysis showed that a limited number of species were significant indicators of unburned control forests in all regions, except Acre. Forests structure variables and leaf litter volume were all important in shaping ant communities, but their relative importance varied between regions. Our results indicate that burned forest have different ant species communities from unburned forests, and those differences are still apparent 10 years after the disturbance, highlighting the importance of effective policies for fire management in Amazon.  相似文献   

10.
Abstract Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre‐burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.  相似文献   

11.
Factors governing landscape‐scale flammability are poorly understood, yet critical to managing fire regimes. Studies of the extent and severity of the 2003 Australian alpine fires revealed marked differences in flammability between major alpine plant communities, with the occurrence and severity of fire greater in heathland compared to grassland. To understand this spatial variation in landscape flammability, we documented variation in two physical properties of fuel – load and bulk density – at the life‐form and plant community scale. We measured the load (mass per unit area) and bulk density (mass per unit volume) of fine fuels (<6 mm) at 56 sites across the Bogong High Plains, southeastern Australia. Fine fuel load was positively correlated with shrub cover, and fine fuel bulk density was negatively correlated with shrub cover. Furthermore, fine fuel load and bulk density were accurately predicted using simple measures of canopy height and shrub cover. We also conducted a burning experiment on individual shrubs and snowgrass (Poa spp.) patches to assess comparative differences in flammability between these life‐forms. The burning experiment revealed that shrubs were more flammable than snowgrass as measured by a range of flammability variables. Consequently, our results indicate that treeless alpine landscapes of southeastern Australia are differentially flammable because of inherent life‐form differences in both fine fuel load and bulk density. If shrub cover increases in these alpine landscapes, as projected under climate change, then they are likely to become more flammable and may experience more frequent and/or severe fires.  相似文献   

12.
Question: To what extent do low flammability fuel traits enhance the survival and persistence of fire‐sensitive (slowing‐growing, non‐serotinous, non‐resprouting) dominant trees in highly flammable landscapes, under varying fire‐weather conditions? Location: Mixed forests co‐dominated by flammable Eucalyptus species and fire‐sensitive Callitris glaucophylla in Pilliga State Forest, southeast Australia. Methods: The influence of vegetation composition (relative abundance of Callitris and flammable Eucalyptus) on fire intensity and survival of fire‐sensitive Callitris was assessed across gradients of Callitris abundance in mixed EucalyptusCallitris forests that burned under low‐moderate and extreme fire‐weather conditions. Results: In areas that burned under low‐moderate fire‐weather conditions, as Callitris abundance increased, fire intensity declined and Callitris survival increased (46%). By comparison, in extreme fire‐weather conditions, lower fire intensity at higher levels of Callitris abundance, was not sufficient to increase Callitris survival (4%). Callitris survival was also positively related to trunk diameter. Ground fuel type, but not biomass, varied with vegetation composition. Conclusions: These results demonstrate that flammable feedbacks, mediated by low flammability fuel traits of dominant trees, can provide an important mechanism for enhancing the survival and persistence of slow‐growing, non‐serotinous, non‐resprouting, fire‐killed trees in highly flammable landscapes. By modifying vegetation and fuel structure, patches of fire‐sensitive Callitris reduce fire intensity, and thereby reduce Callitris mortality, enhancing population persistence. However, this feedback loop is insufficient to ensure Callitris survival under extreme fire‐weather conditions, when fire intensity is greater. After burning, stands remain vulnerable to future fires, until trees grow large enough to modify fuel levels and reduce stand flammability.  相似文献   

13.
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.  相似文献   

14.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

15.
Fire-prone ecosystems contain plants that are both fire-adapted and flammable. It has been hypothesized that these plants were under selection to become more flammable, but it is unclear whether this could be adaptive for an individual plant. We propose arrested succession as a robust mechanism that supports the evolution of flammability in surface fire ecosystems without the need to invoke group selection or additional fitness benefits. We used the natural history of lodgepole pine (Pinus ponderosa) forests, longleaf pine (Pinus palustris) forests, and tall grass prairies to create a general mathematical model of surface fire ecosystems and solved for the evolutionarily stable strategy (ESS) level of flammability. In our model, fires always kill understory plants and only sometimes kill overstory plants. Thus, more flammable plants suffer increased mortality due to fires, but also more frequently arrest succession by clearing their understory of late successional competitors. Increased flammability was selected for when the probability of an overstory plant dying from an individual fire was below a maximum threshold and the rate of succession relative to fires was above a minimum threshold. Future studies can test our model predictions and help resolve whether or not plants have been selected to be more flammable.  相似文献   

16.
The response of fire to climate change may vary across fuel types characteristic of differing vegetation types (i.e. litter vs. grass). Models of fire under climatic change capture these differing potential responses to varying degrees. Across south‐eastern Australia, an elevation in the severity of weather conditions conducive to fire has been measured in recent decades. We examined trends in area burned (1975–2009) to determine if a corresponding increase in fire had occurred across the diverse range of ecosystems found in this part of the continent. We predicted that an increase in fire, due to climatic warming and drying, was more likely to have occurred in moist, temperate forests near the coast than in arid and semiarid woodlands of the interior, due to inherent contrasts in the respective dominant fuel types (woody litter vs. herbaceous fuels). Significant warming (i.e. increased temperature and number of hot days) and drying (i.e. negative precipitation anomaly, number of days with low humidity) occurred across most of the 32 Bioregions examined. The results were mostly consistent with predictions, with an increase in area burned in seven of eight forest Bioregions, whereas area burned either declined (two) or did not change significantly (nine) in drier woodland Bioregions. In 12 woodland Bioregions, data were insufficient for analysis of temporal trends in fire. Increases in fire attributable mostly to warming or drying were confined to three Bioregions. In the remainder, such increases were mostly unrelated to warming or drying trends and therefore may be due to other climate effects not explored (e.g. lightning ignitions) or possible anthropogenic influences. Projections of future fire must therefore not only account for responses of different fuel systems to climatic change but also the wider range of ecological and human effects on interactions between fire and vegetation.  相似文献   

17.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

18.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

19.
金森  王舜娆 《生态学杂志》2015,26(12):3657-3662
通过对南昌8种森林可燃物的热重分析,研究了其热解特性,并根据热解参数对其燃烧性中的易燃性、剧烈性和持续性3个维度进行评价.结果表明: 8种森林可燃物可分为两大类,一类是香樟和油茶,易燃但燃烧相对不剧烈,持续时间短;另一类是鹅掌楸、银杏、雪松、桂花、楠竹、阴香,不易燃但燃烧相对剧烈和持续.燃烧性的3个维度的评价往往不相同,对于所研究的8种可燃物,一些可燃物易燃但不剧烈、不持续,另外一些可燃物不易点燃但燃烧剧烈或持续,说明了燃烧性内涵的复杂性和分维度评价燃烧性的必要性.3个维度的评价能够更完整地反映可燃物燃烧性的不同侧面,有助于更好地理解和解释森林可燃物的火行为.  相似文献   

20.
Rates of weight loss and release of N, P, K, S, Ca, Mg, Na, and Cl from litter of several species in jarrah (E. marginata Donn ex Sm.) forest were measured in relation to site fire history and soil type. Weight loss from leaf litter decreased in the order jarrah > marri (E. calophylla R. Br. ex Lindl.) > Banksia grandis Willd. After 18 months on the forest floor senesced leaves of jarrah, marri and Banksia had lost 45%, 42% and 19%, respectively, of their original weight. Although greatest rates of decomposition occurred on a site burnt 3 y previously by an intense autumn fire and slowest rates on a site which had not been burnt for 8 y, the differences between burn sites were small in comparison with the total weight loss from decomposing litter. The order of release of nutrients from decomposing eucalypt litter was P<N<Ca<S<Mg<Cl<K<Na. There appears to be only slow release of N and P from the litter layer of these forests in the period between successive control burns. Fresh jarrah leaves, which are similar in chemical composition to leaf litter falling after crowns have been scorched by intense fire, decompose rapidly in comparison with senescent leaf tissue. Release of nutrients, particularly N and P, is also more rapid from fresh leaves than from leaf litter. Rates of decomposition of green leaves differed between soil types in the order reddish gravels > dark sandy duplex soil > yellow gravels. These differences may be related to the higher nutrient status of the reddish gravel soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号