首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Aims: The upper elevation limit of forest vegetation in mountain ranges (the alpine treeline ecotone) is expected to be highly sensitive to global change. Treeline shifts and/or ecotone afforestation could cause fragmentation and loss of alpine habitat, and are expected to trigger considerable alterations in alpine vegetation. We performed an analysis of vegetation structure at the treeline ecotone to evaluate whether distribution of the tree population determines the spatial pattern of vegetation (species composition and diversity) across the transition from subalpine forest to alpine vegetation. Location: Iberian eastern range of the Pyrenees. Methods: We studied 12 alpine Pinus uncinata treeline ecotones. Rectangular plots ranging from 940 to 1900 m2 were placed along the forest‐alpine vegetation transition, from closed forest to the treeless alpine area. To determine community structure and species distribution in the treeline ecotone, species variation along the forest‐alpine vegetation transition was sampled using relevés of 0.5 m2 set every 2 m along the length of each plot. Fuzzy C‐means clustering was performed to assess the transitional status of the relevés in terms of species composition. The relation of P. uncinata canopy cover to spatial pattern of vegetation was evaluated using continuous wavelet transform analysis. Results: Vegetation analyses revealed a large degree of uniformity of the subalpine forest between all treeline ecotone areas studied. In contrast, the vegetation mosaic found upslope displayed great variation between sites and was characterized by abrupt changes in plant community across the treeline ecotone. Plant richness and diversity significantly increased across the ecotone, but tree cover and diversity boundaries were not spatially coincident. Conclusions: Our results revealed that no intermediate communities, in terms of species composition, are present in the treeline ecotone. Ecotone vegetation reflected both bedrock type and fine‐scale heterogeneity at ground level, thereby reinforcing the importance of microenvironmental conditions for alpine community composition. Tree cover did not appear to be the principal driver of alpine community changes across the treeline ecotone. Microenvironmental heterogeneity, together with effects of past climatic and land‐use changes on ecotone vegetation, may weaken the expected correlation between species distribution and vegetation structure.  相似文献   

2.
《Plant Ecology & Diversity》2013,6(3-4):355-364
Background: The alpine treeline ecotone is regarded as a sensor of the effects of global change on alpine plant communities. However, little is known about how treeline dynamics influence the diversity and composition of alpine plant communities. Such information is necessary to forecast how ascending montane forests may affect the composition of alpine flora.

Aims: We analysed the temporal variations in tree cover, plant diversity and composition, and the effect of tree cover dynamics on field layer vegetation over a period of 11 years, at two alpine treeline ecotones in the central Pyrenees, Spain.

Methods: Tree and field layer vegetation was sampled in permanent transects in 1998 and 2009, using the point-intercept method. Temporal changes in tree cover, plant species richness and abundance were characterised along the ecotone by using a randomisation approach, rarefaction curves, and a non-parametric multivariate test, respectively.

Results: Tree cover increased significantly at one of the sites, whereas plant species richness only increased at the other site where tree cover had not changed. Vegetation composition changed significantly at both sites, but it was not spatially coupled with changes in tree cover along the ecotone.

Conclusions: A change of tree cover does not necessarily trigger changes in the ground flora at the treeline over relatively short periods (decade scale). The results challenge our ability to infer short-term biodiversity impacts from upslope advance of forests. Integrated tree and field layer monitoring approaches are necessary to produce a better understanding of the impact of ongoing global change on treeline ecotones.  相似文献   

3.
Background: Treeline ecotones represent environmental boundaries that fluctuate in space and time and thus induce changes in plant taxonomic and functional diversity.

Aims: To study changes through time in taxonomic and functional plant diversity patterns along the treeline ecotone.

Methods: In 2002, vegetation was sampled along a gradient from upper montane forest to the treeline–alpine transition in the South Ural Mountains, Russia. In 2014, vegetation was resampled and plant functional traits were collected. We studied spatial and temporal changes in plant species composition, functional composition and functional diversity.

Results: Species composition and diversity changed along the elevational gradient. The functional composition in height, leaf area, specific leaf area and leaf nitrogen content decreased with elevation, whereas functional composition of leaf carbon content increased. We found a temporal shift towards shorter plants with smaller leaves in treeline sites. Functional richness varied in several traits along the elevational gradient, while functional dispersion showed a trend towards increased functional dispersion in height, specific leaf area and leaf nitrogen in the treeline–tundra transition.

Conclusions: Tree encroachment across the treeline ecotone has resulted in a shift in plant species relative abundances and functional diversity, possibly affecting plant community assembly patterns.  相似文献   

4.
马锐骜  吴辉  王志瑞  戴冠华  于大炮  姜勇  李慧 《生态学报》2021,41(24):9847-9856
林线过渡带是指从郁闭森林上限到树种分布上限之间的区域,过渡带内生物多样性丰富,生态系统结构、功能和生态过程在很小的海拔梯度内发生剧烈变化,因此对全球气候变化和人类活动极为敏感。树岛是在林线过渡带内出现的斑块状或条带形不连续分布的树木集群,树岛内生存的树木通常能达到与较低海拔郁闭森林同样的高度和胸径,因此揭示树岛这一特殊生境的生态特征及其形成机制,对于预测未来气候变化下林线动态具有重要意义。以长白山岳桦林线过渡带一大型树岛作为研究对象,测定了土壤理化性质和土壤酶活性,采用宏基因组测序技术分析了微生物群落结构组成和功能基因丰度,通过与同海拔的开阔区生境进行对比,揭示了树岛这一特殊生境的土壤微生物群落结构特征和潜在生态功能,从土壤养分和土壤微生物学角度,阐明树岛形成的可能驱动机制。结果表明,树岛土壤的含水量、总碳、总氮和微生物生物量显著高于同海拔开阔区(P<0.05),与微生物r-策略相关的生理生化和遗传学指标,包括纤维素酶活性、放线菌相对丰度、与转录、防御、控制细胞周期相关的基因丰度、小分子碳降解基因丰度,均高于开阔区(P<0.05)。相反的,与微生物K-策略相关的指标,包括酸杆菌相对丰度、大分子碳降解基因相对丰度低于开阔区。揭示了树岛土壤微生物学特征,并从土壤微生物组学角度探讨了树岛形成的潜在机制,认为树岛内土壤养分增加并导致微生物群落r-策略倾向,这种变化反过来也可能促进树岛进一步扩大,进而影响林线动态。  相似文献   

5.
Aim  We quantify the elevational patterns of species richness for all vascular plants and some functional and taxonomic groups on a regional scale on a tropical mountain and discuss some possible causes for the observed patterns.
Location  Mount Kinabalu, Sabah, Borneo.
Methods  A data base containing elevational information on more than 28,000 specimens was analysed for vascular plant distribution, taking into account sampling effort. The total species richness pattern was estimated per 300-m elevational interval by rarefaction analyses. The same methods were also applied to quantify species richness patterns of trees, epiphytes, and ferns.
Results  Total species richness has a humped relationship with elevation, and a maximum species richness in the interval between 900 and 1200 m. For ferns and epiphytes the maximum species richness is found at slightly higher elevations, whereas tree species did not have a statistically significant peak in richness above the lowest interval analysed.
Main conclusions  For the first time a rigorous estimate of an elevational pattern in species richness of the whole vascular plant flora of a tropical mountain has been quantified. The pattern observed depends on the group studied. We discuss the differences between the groups and compare the results with previous studies of elevational patterns of species richness from other tropical areas. We also discuss the methods used to quantify the richness pattern and conclude that rarefaction gives an appropriate estimate of the species richness pattern.  相似文献   

6.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   

7.
Camarero  J.J.  Gutiérrez  E. 《Plant Ecology》2002,162(2):247-257
We describe the structure of two contrasting (elevation, topography,climate, vegetation, soil) alpine forest–pasture ecotones located in theCentral Pyrenees (sites Ordesa, O, and Tessó, T). We define ecotonestructure as the spatial distribution of trees of different size classes andgrowth-forms and the relationship between these aspects and the spatialdistribution of understory vegetation and substrate. The studied ecotones aredominated by Pinus uncinata Ram. and have been littleaffected by anthropogenic disturbances (logging, grazing) during this century.One rectangular plot (30 × 140 m) was located within eachsite with its longest side parallel to the slope and encompassing treeline andtimberline. The distribution of size and growth-form classes at site O followeda clear sequence of increasing size downslope from shrubby multistemmedkrummholz individuals to bigger arborescent trees. At site O, regeneration wasconcentrated near the krummholz area and over rocky substrates. This suggeststhat krummholz may modify microenvironment conditions and increase seedlingsurvival. At site T, regeneration was abundant above the treeline where thecover of the dominant understory shrub (Rhododendronferrugineum) decreased. In both ecotones the diversity of plants washigher above the treeline than in the forest and decreased going downslopecoinciding with the increase of P. uncinata cover. Thereduction of plant diversity appeared above the current timberline. At site O,the decrease was steep and spatially heterogeneous what may be due in part tothe edaphic heterogeneity. At site T the change was abrupt though smaller. Therelationships between the plant community and tree regeneration should be takeninto account in future ecological studies of treeline pattern.  相似文献   

8.
Thermal control of treeline position is mediated by local environmental and ecological factors, making trends in treeline migration difficult to extrapolate geographically. We investigated the ecological dynamics of conifer establishment at treeline in the Mealy Mountains (Labrador, Canada) and the potential for its expansion with climate warming. Available seedbed and tree seedling emergence in the treeline ecotone were monitored, and seeds and seedlings of Picea mariana were planted along an elevational gradient from open-canopy forest through tree islands to alpine tundra. Experimental treatments included passive warming of daytime air, ground disturbance, and vertebrate herbivore exclosures. Responses in seed germination and seedling growth, damage, and mortality were monitored over two growing seasons, and re-surveyed after 5 years. While no tree seedlings were observed growing naturally above the treeline, planted seeds were able to germinate, develop and overwinter, and persist for 4 years in all habitats examined. Disturbance of the seedbed was important for seedling emergence in the forest and tree islands. While temperature enhancement alone had little impact on emergence, even moderate temperature increases had significantly disproportionate effects on emergence of seedlings in the alpine habitat when combined with soil disturbance, indicating that future climate warming could lead to treeline advance if viable seed and suitable substrate for recruitment are available. The positive effect of excluding herbivores suggests that herbivory may be an important filter modifying future species distribution. While seedbed conditions and herbivory would control the rate of individual species advance, the results indicate potential upslope migration of the treeline in the Mealy Mountains, with consequent loss of alpine ecosystems.  相似文献   

9.
《Acta Oecologica》2006,29(3):241-246
Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310–1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600–700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.  相似文献   

10.
《Dendrochronologia》2014,32(3):210-219
European black pine (Pinus nigra ssp. nigra Arnold) encroachment at increasing elevation has been analyzed at four treeline ecotones of the central Apennines (Italy). The study sites are located along a North-South gradient of 170 km across Marche and Abruzzo regions in Central Italy. The aims of this study were: (i) to detect possible common patterns of structural attributes of black pine regeneration at the treeline ecotone; (ii) to date the seedlings germination and (iii) to assess the climate influence on the pine upward encroachment process also using intra-annual density fluctuations (IADFs) in tree-rings. We sampled 658 encroached black pine trees above the current treeline to the mountain top. All individuals were mapped and their basal stem diameter, total height, annual height increments and other structural attributes measured. One increment core was extracted from stem base of most samples for cambial age determination and detection of intra-annual density fluctuations (IADF). At two sites we also extracted cores at DBH from forest trees to assess climate–growth relationships of black pine. We used multivariate analysis (PCA) to explore the correlation structure of the main tree attributes, regression analysis to relate radial and height increment and dendroclimatic analysis to assess the influence of climate on tree growth and IADF formation.Most black pine trees were located at high altitude and their structural attributes were similar at the four sites where the pine encroachment process started between 30 and 40 years ago featuring similar germination peaks and growth patterns. Black pine is particularly sensitive to maximum temperatures and IADF occurred in mid-late summer with highest frequency peaks between 2003 and 2004. The pine encroachment process, besides the differences of environmental features and land use histories of the four study sites, appears synchronic and spatially diffused. Consistent tree-growth dynamics and the species adaptation to a warming climate are signals envisaging a possible treeline upward shift.  相似文献   

11.
Changes in composition and structure of plant communities in relation tothe soil and snow cover variation were analyzed along an altitudinal transect(1150–1750 m) from the mountain-temperate forests to a woodyshrub community and alpine meadows on Mt Velký Gápel', Slovakia.The soils below the treeline (1510 m) had a more developedorganic layer above the mineral substratum. Generally, soil depth decreased asthe altitude increased, although the maximum values were recognized at a middlealtitude in a beech stand. Snow was redistributed by westerly winds from theridgeline down to the upper forest margin. Mean snow depth decreased withaltitude up to almost snow-free sites around the summit. In the 48 plots at 16sites we recorded 118 taxa including 6 tree, 7 shrub, 18 grass, 42 herb, 5fern,25 moss and 15 lichen species. The species diversity showed no distinctrelationship to altitude but declined with canopy consolidation. The TWINSPANfloristic classification distinguished five groups of community typescharacterised by different dominants, and a further three clusters of samplesfrom transition zones. Horizontal compositional heterogeneity increased inareaswhere trees were aggregated and tree basal area was smaller. Vegetationcomposition became more patchy at open-canopy Acerpseudoplatanus–Abies alba mixed forest at 1150 m,in Picea abies forest limit 1470 m, andin Pinus mugo krummholz at 1590 m. Speciesturnover of the entire transect was 6.1 half-changes as estimated by DCA.Despite this heterogeneity, none of the 15 elevational bands had significantaggregation of species' limits. Vegetation varied continuously, with individualspecies overlapping in transition zones delimited by dominant taxa. Thecoincident aggregation of up-slope and down-slope boundaries was found at abelt1430–1510 m. This discrete ecotone corresponds to a shiftfrom the closed coniferous forest to P. mugo krummholz.Thesecond inherent up-slope boundary aggregation indicated the P.mugo krummholz – alpine meadow vegetation transition at1700 m. Spatial analysis (K-function) of eight forest plots(0.12 ha each) showed that at lower elevation, adult trees of thebroad-leaf forest were closer to a random arrangement while at higherelevation,trees of evergreen coniferous stands became aggregated toward the forest limitwith the highest intensity from 2 to 4 m. Altitudinal gradient andrelated factors explained 35% of the variance in vegetation data.Canonical correspondence analysis also showed that main vegetation changesabovethe treeline area were associated with the topographic pattern of pine shrubsand snow cover.  相似文献   

12.
Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m2/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.  相似文献   

13.
Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand‐total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming‐induced treeline dynamics.  相似文献   

14.
Aims Alpine tree line ecotones are harsh environments where low temperatures constrain tree regeneration and growth. However, the expected upward shift of tree line ecotones in response to climate warming has not been ubiquitous. The lack of coupling between tree line dynamics and climate warming might be explained by factors other than climate variation that determine seedling recruitment in these ecotones. We want to assess how the availability of suitable habitat for establishment and the effects of facilitation on seedling survival and growth affect tree recruitment within tree line ecotones and modulate their responses to climate. Location We evaluate the relevance of these factors for Pinus uncinata tree line ecotones in the Catalan Pyrenees (north‐east Spain) and Andorra. Methods We analysed the microhabitat of naturally established seedlings in rectangular plots at the tree line ecotone, assessing the habitat type and the proximity to potentially protective elements that may improve microsite conditions. We tested whether krummholz individuals influence regeneration at the tree line by performing a transplantation field experiment to evaluate the extent of facilitation on seedling survival and growth in height. A total of 820 seedlings were transplanted at different distances and orientations (resulting in 12 positions) from krummholz mats and monitored over 2 years. Results Safe sites for P. uncinata recruits consisted of sparse vegetation covering bare soil, gravel or litter, and close to protective elements that may ameliorate microsite conditions. The field experiment showed that directional positive interactions enhance seedling survival and growth, altering the spatial patterns of recruit survivorship, especially during harsh winter conditions (shallow and irregular snowpack). Main conclusions Our results suggest that scarce availability of safe sites and uneven facilitation by krummholz control seedling recruitment patterns within alpine tree line ecotones. Such constraints may distort or counter the response of tree line ecotones to climate warming at local and regional scales.  相似文献   

15.
热量匮乏是高山树线的主要成因, 在全球变暖趋势下对高山树线及其建群种的生态学过程及特征的研究具有重要意义。该文以青藏高原东缘的折多山和剪子弯山两处高山树线(海拔分别为4 265 m和4 425 m)作为研究对象, 通过设置垂直样带, 同时结合区域温度、降水的长时间序列分析, 探究两处树线的时空动态过程, 并明确了建群种冷杉(Abies spp.)的生态学特征。结果表明: 1)折多山和剪子弯山区域的气温在过去58年均存在显著的上升趋势(分别上升了0.72和0.91 ℃), 而折多山和剪子弯山区域降水均存在微弱的降低趋势。2)折多山的峨眉冷杉(A. fabri)龄级结构呈反J形, 剪子弯山的鳞皮冷杉(A. squamata)龄级结构呈双峰形, 二者种群结构均相对稳定。3)在小尺度上, 种子扩散限制使得两处树线的冷杉聚集分布。在大尺度上, 折多山峨眉冷杉亦呈聚集分布, 而剪子弯山鳞皮冷杉受生长环境以及种内或种间关系的影响呈随机分布。4)两处样地建群树种的树高和基径均随海拔升高而降低, 位于树线交错带上部的冷杉均呈现树高生长大于径向生长的异速生长关系, 而位于样地中、下部位的冷杉大部分呈等速生长关系。5)相比10年前, 折多山和剪子弯山的树线及树种线位置均无明显变化, 剪子弯山鳞皮冷杉种群的树木密度亦无明显变化, 而折多山的树木个体数提高了约25%; 相比20年前, 折多山和剪子弯山的树种线分别上移了50和30 m, 树线位置分别升高了75和40 m, 树木个体数亦明显增加, 分别提高了约220%和100%。树线及其建群种在较大时空尺度上主要受热量的控制, 而在较小时空尺度上受温度及生长环境共同作用的影响。  相似文献   

16.
The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation. As treeline heterogeneity increases from global to regional and smaller scales, assessment of treeline sensitivity at the landscape and local scales requires a more complex approach than at the global scale. The time scale (short‐, medium‐, long‐term) also plays an important role when considering treeline sensitivity. The sensitivity of the treeline to a changing environment varies among different types of treeline. Treelines controlled mainly by orographic influences are not very susceptible to the effects of warming climates. Greatest sensitivity can be expected in anthropogenic treelines after the cessation of human activity. However, tree invasion into former forested areas above the anthropogenic forest limit is controlled by site conditions, and in particular, by microclimates and soils. Apart from changes in tree physiognomy, the spontaneous advance of young growth of forest‐forming tree species into present treeless areas within the treeline ecotone and beyond the tree limit is considered to be the best indicator of treeline sensitivity to environmental change. The sensitivity of climatic treelines to climate warming varies both in the local and regional topographical conditions. Furthermore, treeline history and its after‐effects also play an important role. The sensitivity of treelines to changes in given factors (e.g. winter snow pack, soil moisture, temperature, evaporation, etc.) may vary among areas with differing climatic characteristics. In general, forest will not advance in a closed front but will follow sites that became more favourable to tree establishment under the changed climatic conditions.  相似文献   

17.
《植物生态学报》2018,42(11):1082
热量匮乏是高山树线的主要成因, 在全球变暖趋势下对高山树线及其建群种的生态学过程及特征的研究具有重要意义。该文以青藏高原东缘的折多山和剪子弯山两处高山树线(海拔分别为4 265 m和4 425 m)作为研究对象, 通过设置垂直样带, 同时结合区域温度、降水的长时间序列分析, 探究两处树线的时空动态过程, 并明确了建群种冷杉(Abies spp.)的生态学特征。结果表明: 1)折多山和剪子弯山区域的气温在过去58年均存在显著的上升趋势(分别上升了0.72和0.91 ℃), 而折多山和剪子弯山区域降水均存在微弱的降低趋势。2)折多山的峨眉冷杉(A. fabri)龄级结构呈反J形, 剪子弯山的鳞皮冷杉(A. squamata)龄级结构呈双峰形, 二者种群结构均相对稳定。3)在小尺度上, 种子扩散限制使得两处树线的冷杉聚集分布。在大尺度上, 折多山峨眉冷杉亦呈聚集分布, 而剪子弯山鳞皮冷杉受生长环境以及种内或种间关系的影响呈随机分布。4)两处样地建群树种的树高和基径均随海拔升高而降低, 位于树线交错带上部的冷杉均呈现树高生长大于径向生长的异速生长关系, 而位于样地中、下部位的冷杉大部分呈等速生长关系。5)相比10年前, 折多山和剪子弯山的树线及树种线位置均无明显变化, 剪子弯山鳞皮冷杉种群的树木密度亦无明显变化, 而折多山的树木个体数提高了约25%; 相比20年前, 折多山和剪子弯山的树种线分别上移了50和30 m, 树线位置分别升高了75和40 m, 树木个体数亦明显增加, 分别提高了约220%和100%。树线及其建群种在较大时空尺度上主要受热量的控制, 而在较小时空尺度上受温度及生长环境共同作用的影响。  相似文献   

18.
《Acta Oecologica》1999,20(3):219-224
Information concerning the occurrence of very young (1- to 10-year-old) tree seedlings in the alpine treeline ecotone is rare. Seedling occurrence of the dominant conifers Picea engelmannii and Abies lasiocarpa was measured in the treeline ecotone of the Medicine Bow Mountains, Wyoming (central Rocky Mountains, USA), an area composed of elongated tree islands separated by open meadows (ribbon forest) that grade into the closed forest. No seedlings were found on the windward sides of tree islands, while a mean of 0.6 seedlings.m–2 occurred on the leeward (downward) sides. These values compared to the 4.2 seedlings.m–2 in the closed forest. In addition, a strong correspondence was found between snowpack depth and seedling abundance, with depths that were either too shallow (< 0.5 m) or too deep (> 1.5 m) associated with fewer or no seedlings. A. lasiocarpa seedlings made up much less of the overall seedling population in the ribbon forest (6 %) than in the closed forest (22 %). Seedling establishment in this portion of the alpine treeline ecotone appears to be occurring at a low rate that differs between the two dominant species and may be strongly influenced by wind-driven snow accumulation patterns.  相似文献   

19.
Elevation is involved in determining plant diversity in montane ecosystems. This study examined whether the distribution of plants in the Yatsugatake Mountains, central Japan, substantiated hypotheses associated with an elevational diversity gradient. Species richness of trees, shrubs, herbs, ferns, and bryophytes was investigated in study plots established at 200‐m elevational intervals from 1,800 to 2,800 m. The changes in plant diversity (alpha and beta diversities, plant functional types, and elevational ranges) with elevation were analyzed in relation to climatic factors and elevational diversity gradient hypotheses, that is, mass effect, mid‐domain effect, and Rapoport''s elevational rule. In addition, the elevational patterns of dominance of plant functional types were also analyzed. A comparison of alpha and beta diversities revealed that different plant groups responded variably to elevation; the alpha diversity of trees and ferns decreased, that of herbs increased, whereas the alpha diversity of shrubs and bryophytes showed a U‐shaped relationship and a hump‐shaped pattern. The beta diversity of shrubs, herbs, and bryophytes increased above the subalpine–alpine ecotone. In accordance with these changes, the dominance of evergreen shrubs and graminoids increased above this ecotone, whereas that of evergreen trees and liverworts decreased. None of the plant groups showed a wide elevational range at higher elevations. These elevational patterns of plant groups were explained by climatic factors, and not by elevational diversity gradient hypotheses. Of note, the changes in the dominance of plant groups with elevation can be attributed to plant–plant interactions via competition for light and the changes in physical habitat. These interactions could alter the elevational diversity gradient shaped by climatic factors.  相似文献   

20.

Key message

Field survey methods influence the assessment of treeline structure and inferences on reconstructed treeline dynamics.

Abstract

Numerous field studies have described the structure of alpine treeline ecotones encompassing the forest limit and treeline to infer their dynamics in response to climate warming. However, the inferred treeline dynamics may be biased due to the selection of different plot sizes and shapes. Rectangular large plots including the whole treeline ecotone, i.e., encompassing the forest limit and the treeline, and square small plots located at current treeline have been widely used. Nevertheless, little is known about how large a plot must be to capture the main features of treeline structure and dynamics. Here, we investigate this question at Smith fir treelines located in the Sygera Mountains, southeastern Tibetan Plateau. Six rectangular large treeline plots (30 × 150 m) were sampled and compared with six square small treeline plots (30 × 30 m). Six rectangular plots with lengths shorter than the treeline ecotone span (100–135 m) were also sampled and compared with the other two plot types. Dendrochronology was used to reconstruct the recruitment dynamics of treelines, which were related to summer mean minimum temperatures. Rectangular large plots better captured the main features of recent treeline dynamics such as the abundance of recruits from the 1950s onwards and the establishment of old trees. Therefore, large plots allowed reaching more robust conclusions on treeline dynamics as compared to small plots. On the other hand, smaller rectangular plots revealed similar findings to those inferred from large rectangular plots but with a much lower survey cost. We propose using smaller rectangular plot with its longest side being shorter than the ecotone span as the most reliable and practical method to characterize alpine treeline dynamics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号