首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus Nef protein accelerates virulent progression of AIDS by its interaction with specific cellular proteins involved in cellular activation and signal transduction. Here we report the purification and crystallization of the conserved core of HIV-1LAI Nef protein in the unliganded form and in complex with the wild-type SH3 domain of the P59fyn protein-tyrosine kinase. One-dimensional NMR experiments show that full-length protein and truncated fragment corresponding to the product of HIV-1 protease cleavage have a well-folded compact tertiary structure. The ligand-free HIV-1 Nefcore protein forms cubic crystals belonging to space group P23 with unit cell dimensions of a = b = c = 86.4 A. The Nef-Fyn SH3 cocrystals belong to the space group P6(1)22 or its enantiomorph, P6(5)22, with unit cell dimensions of a = b = 108.2 A and c = 223.7 A. Both crystal forms diffract to a resolution limit of 3.0 A resolution using synchrotron radiation, and are thus suitable for X-ray structure determination.  相似文献   

2.
Psophocarpin B1 is a 20,000 Mr protein of winged bean (Psophocarpus tetragonolobus) seeds having chymotrypsin inhibitory activity. Single crystals of this protein suitable for X-ray crystallographic studies have been obtained by the vapour diffusion method using ammonium sulphate. The crystals are hexagonal, space group P6(4)22 or P6(2)22, cell dimensions a = b = 61 A, c = 210 A. They are stable to irradiation with X-rays and diffract to at least 2.6 A resolution.  相似文献   

3.
The 64 x 10(3) Mr N-terminal breakage-reunion domain of the Escherichia coli DNA gyrase A protein was purified from an over-expressing strain. When complexed with the gyrase B protein, this truncated A protein has all of the enzymic properties of the full-length counterpart, although with reduced efficiency in some cases. The 64 x 10(3) Mr protein has been crystallized in several forms, a number of which were too small for crystallographic analysis. However, two forms grew to sufficient size for preliminary X-ray analysis. Both forms were tetragonal with a primitive lattice. One form (type I) had cell dimensions of a = b = 170 A, c = 145 A a space group of either P41212 (P43212) or P42212, and diffracted to 6 A resolution. The type II crystals had cell dimensions of a = b = 177 A, c = 175 A, a space group of P41212 (P43212) or P42212, and diffracted to at least 4.5 A resolution. Both crystal forms apparently contained four subunits (possibly a tetramer) in the asymmetric unit. We are attempting to increase the size and quality of these crystals.  相似文献   

4.
An integral membrane protein forming channels across Escherichia coli outer membranes, porin, has been crystallized using a polyethylene glycol or salt-generated two-phase system. Monodispersity and homogeneity of protein-detergent complexes were found to be prerequisites for reproducible formation of crystals amenable to X-ray structural analysis. By varying pH, detergent and buffer type, large crystals of three different habits can be obtained, two of which are discussed in this paper. The tetragonal form (space group P4(2); unit cell dimensions, a = b = 155 A, c = 172 A) is suitable for X-ray analysis. Low temperature induces a change of the space group to P4(2)22, with a single trimer in the asymmetric unit. This crystal form diffracts to a resolution beyond 2.9 A. The hexagonal crystal form (space group P6(3)22; unit cell dimensions, a = b = 93 A, c = 220 A) is limited in resolution to 4.5 A, but reveals a packing arrangement very similar to that in two-dimensional membrane-like crystalline arrays.  相似文献   

5.
Crystallization of the DNA-binding Escherichia coli protein FIS   总被引:2,自引:0,他引:2  
The specific DNA-binding protein FIS (factor for inversion stimulation), which stimulates site-specific DNA inversion by interaction with an enhancer sequence, was purified from an Escherichia coli strain overproducing the protein. FIS was crystallized at room temperature by microdialysis against 1.2 to 1.5 M-sodium/potassium phosphate containing 10 mM-Tris.HCl, 0.5 to 1 M-NaCl and 1 mM-NaN3 at pH 8.0 to 8.2. The crystals are stout prisms and suitable for X-ray diffraction study beyond 2.5 A resolution. They belong to the orthorhombic space group P2(1)2(1)2(1). The unit cell has dimensions a = 47.57(4) A, b = 51.13(4) A, c = 79.83(6) A and contains one FIS dimer in the asymmetric unit.  相似文献   

6.
An Escherichia coli clone encoding a single cohesin domain of the cellulosome-integrating protein CipA from Clostridium thermocellum was constructed, and the corresponding polypeptide was purified, treated with papain, and crystallized from a PEG 8000 solution. Crystals exhibit orthorhombic symmetry, space group P2(1)2(1)2(1), with cell dimensions a = 37.7 A, b = 80.7 A, c = 93.3 A, and four or eight molecules in the unit cell. The crystals diffract X-rays to beyond 2 A resolution and are suitable for further crystallographic studies.  相似文献   

7.
A quadruple mutant of staphylococcal nuclease, nuclease (V66L/G79S/G88V/L108V), has been crystallized in a form well suited to moderate-to-high resolution x-ray diffraction analysis. This mutant is highly unstable; only about 20% of the protein in solution at room temperature is in its folded form. Under the crystallization conditions, the protein exhibits circular dichroism properties similar to, but not identical with, those of native wild type protein. The crystals belong to the space group P6(1)22 or P6(5)22 with unit cell dimensions of a = b = 61.1 A, c = 170.1 A and diffract to at least 2.5 A resolution. A data set complete to 3.7 A resolution has been collected and processed; attempts to determine the structure using molecular replacement techniques are under way.  相似文献   

8.
We have obtained single crystals of a phosphate-binding protein (Mr = 34,400) that serves as initial receptor in osmotic shock-sensitive active transport in Escherichia coli. The crystals, suitable for high resolution crystallographic analysis, belong to the space group P2(1)2(1)2(1). The unit cell has dimensions of a = 41.97, b = 64.66, and c = 124.6 A and contains four protein molecules. Including this phosphate-binding protein, there are now a total of six different binding protein structures currently under investigation in our laboratory, the others being those specific for L-arabinose, D-galactose, D-maltose, sulfate, or leucine/isoleucine/valine.  相似文献   

9.
A chimeric enzyme (GST121) of the human α-glutathione S-transferases GST1-1 and GST2-2, which has improved catalytic efficiency and thermostability from its wild-type parent proteins, has been crystallized in a space group that is isomorphous with that reported for crystals of GST1-1. However, a single-site (G82R) mutant of GST121, which exhibits a significant reduction both in vitro and in vivo in protein thermostability, forms crystals that are not isomorphous with GST1-1. The mutant protein crystallizes in space group P212121, with cell dimensions a = 49.5, b = 92.9, c = 115.9 Å, and one dimer per asymmetric unit. Preliminary crystallographic results show that a mutation of the surface residue Gly 82 from a neutral to a charged residue causes new salt bridges to be formed among the GST dimers, suggesting that the G82R mutant might aggregate more readily than does GST121 in solution resulting in a change of its solution properties. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Portal proteins are components of large oligomeric dsDNA pumps connecting the icosahedral capsid of tailed bacteriophages to the tail. Prior to the tail attachment, dsDNA is actively pumped through a central cavity formed by the subunits. We have studied the portal protein of bacteriophage P22, which is the largest connector characterized among the tailed bacteriophages. The molecular weight of the monomer is 82.7 kDa, and it spontaneously assembles into an oligomeric structure of approximately 1.0 MDa. Here we present a preliminary biochemical and crystallographic characterization of this large macromolecular complex. The main difficulties related to the crystallization of P22 portal protein lay in the intrinsic dynamic nature of the portal oligomer. Recombinant connectors assembled from portal monomers expressed in Escherichia coli form rings of different stoichiometry in solution, which cannot be separated on the basis of their size. To overcome this intrinsic heterogeneity we devised a biochemical purification that separates different ring populations on the basis of their charge. Small ordered crystals were grown from drops containing a high concentration of the kosmotropic agent tert-butanol and used for data collection. A preliminary crystallographic analysis to 7.0-A resolution revealed that the P22 portal protein crystallized in space group I4 with unit cell dimensions a=b=409.4A, c=260.4A. This unit cell contains a total of eight connectors. Analysis of the noncrystallographic symmetry by the self-rotation function unambiguously confirmed that bacteriophage P22 portal protein is a dodecamer with a periodicity of 30 degrees. The cryo-EM reconstruction of the dodecahedral bacteriophage T3 portal protein will be used as a model to initiate phase extension and structure determination.  相似文献   

11.
Lysozyme from Streptomyces globisporus has been crystallized in a form suitable for X-ray structure analysis using ammonium sulfate as a precipitant. The crystals are hexagonal, space group P6(1)22 (P6(5)22) with unit cell dimensions: a = b = 129 A, c = 143 A. There are three or four molecules per asymmetric unit. The crystals diffract X-rays to at least 3.0 A resolution.  相似文献   

12.
Crystals of the high-potential iron-sulfur protein from Ectothiorhodospira halophila strain BN 9626 have been grown from 3.4 to 3.5 M ammonium sulfate solutions at pH 7.5. The crystals belong to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. There are 2 molecules/asymmetric unit. The crystals diffract to at least 1.8 A, are stable in the x-ray beam, and are suitable for a high resolution x-ray crystallographic analysis.  相似文献   

13.
Crystals of an L-asparaginase from Vibrio succinogenes were obtained with the hanging drop method from ammonium sulphate-containing solutions. The crystals belong to the orthorhombic space group P22(1)2(1) with unit cell dimensions of a = 71.3 A, b = 85.8 A, c = 114.0 A, and contain two tetrameric enzyme molecules per unit cell. There are two subunits in the asymmetric unit; a molecular dyad is coincident with the crystallographic dyad. The crystal lattice is similar to that reported for an Escherichia coli asparaginase. Rotation function calculations have revealed that the V. succinogenes enzyme has 222 point group symmetry in the crystal. The second and third molecular dyads differ, however, from the corresponding E. coli asparaginase dyads by approximately 40 degrees. The crystals diffract to at least 2.2 A resolution and are suitable for X-ray crystallographic structure determination.  相似文献   

14.
X-ray diffraction quality crystals have been obtained from a complex between interferon γ and the extracellular domain of its high-affinity cell surface receptor. The crystals were obtained from interferon γ/interferon γ receptor complexes purified by size exclusion chromatography. Diffraction quality crystals required analyzing these complex samples by isoelectric focusing gels to select purified complex fractions devoid of unbound interferon γ. These studies used interferon γ receptor engineered with an eight amino acid N-terminal deletion to eliminate heterogeneity generated due to proteolytic cleavage. In addition, the receptor was expressed in an E. coli secretion cell line which eliminated the need to refold the protein. Hexagonal crystals were grown from 1.6 M ammonium phosphate solutions and belong to a spacegroup of P6522 with unit cell dimensions a = 145.9 Å and c = 180.3 Å. These crystals diffract to at least 2.9 Å resolution when exposed to synchrotron radiation. SDS PAGE analysis of the crystals demonstrated that both interferon γ and the receptor were present. Analysis of the x-ray diffraction data revealed that the crystals contain complexes with a stoichiometry of 2:1 receptor: ligand within the crystallographic asymmetric unit and consist of approximately 55% solvent. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Bluetongue virus serotype 10 (BTV-10) VP7, expressed by insect cells infected with the recombinant baculovirus, has been purified and crystallized. Two crystal forms suitable for X-ray analysis have been obtained. Type I crystals belong to space group P6(3)22 with a = b = 95.2 A, c = 181.0 A, alpha = beta = 90 degrees gamma = 120.0 degrees, and contain a single subunit in the crystallographic asymmetric unit. They diffract to dmin = 3.0 A. Type II crystals belong to space group P2(1) with a = 69.4 A, b = 97.1 A, c = 71.4 A, beta = 109.0 degrees, and contain a trimer in the crystallographic asymmetric unit. They diffract to dmin = 2.1 A. These results, together with solution studies, show that the molecule is a trimer.  相似文献   

16.
Many attempts have been made to elucidate the three-dimensional structure from elongation factor Tu, but so far the only crystals suitable for X-ray crystallography contained a partially degraded protein. Here, we report the crystallization of a fully active, intact EF-Tu from thermus aquaticus. The crystals belong to hexagonal space group P6(3)(22) and diffract up to 2.6 A. The cell dimensions are a = b = 178 A, c = 238 A and 6 molecules are contained per asymmetric unit.  相似文献   

17.
Large, well-ordered three-dimensional crystals of 50 S ribosomal subunits from Halobacterium marismortui have been obtained by seeding. The crystals have been characterized with synchrotron X-ray radiation as monoclinic, space group P2(1), with unit cell dimensions of a = 182(+/- 5) A, b = 584(+/- 10) A, c = 186(+/- 5) A, beta = 109 degrees. At 4 degrees C, the crystals (0.6 mm X 0.6 mm X 0.1 mm) diffract to 6 A resolution and are stable in the synchrotron beam for several hours. Compact packing is reflected from the crystallographic unit cell parameters and from electron micrographs of positively stained thin sections of embedded crystals.  相似文献   

18.
The purification of bovine lactoferrin, its crystallization at low ionic strength, and preliminary X-ray crystallographic data are reported. The crystals, which grow from a two-phase system, are radiation-stable and suitable for a medium-resolution X-ray analysis. They are orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 138.4 A, b = 87.1 A, c = 73.6 A, and one protein molecule in the asymmetric unit.  相似文献   

19.
3 alpha, 20 beta-Hydroxysteroid dehydrogenase, an NADH-dependent oxidoreductase isolated from Streptomyces hydrogenans , is a tetramer containing four subunits each of Mr 25,000. The enzyme has been crystallized by the vapor diffusion technique using either phosphate or borate buffered ammonium sulfate (pH between 6.0 and 8.7) as the precipitant. The crystals are hexagonal bipyramids ; they have the symmetry of space group P6(4)22 (or P6(2)22), with unit cell dimensions a = 127.3 A, c = 112.2 A. Volume and density considerations imply that the crystallographic asymmetric unit contains two monomers, and therefore that the tetramer possesses a 2-fold axis of symmetry that is coincident with a crystallographic 2-fold symmetry element.  相似文献   

20.
A 35-37-kDa protease-resistant domain of synapsin Ia/ Ib, apparently produced by low levels of endogenous proteases in vapor diffusion droplets, slowly formed crystals diffracting X-rays to approximately 10 A resolution. The fragment mainly consisted of the highly conserved C domain common to the synapsin I/II family plus short N- and C-terminal flanking segments. Two constructs (SynA and SynB) of synthetic gene fragments coding for the C domain of synapsin with or without C-terminal flanking sequence were expressed in Escherichia coli as fusion proteins attached to the soluble protein glutathione-S-transferase. The fusion proteins were purified by affinity chromatography. Subsequent in situ cleavage with TEV protease resulted in the release of highly pure synapsin fragments, which were further purified by ion exchange chromatography. SynA and SynB formed crystals within three days, which diffracted to better than 3 A using a conventional X-ray source and to about 2 A using a synchrotron X-ray source. SynA crystals have the symmetry of the trigonal space groups P3(1)21 or P3(2)21 and the unit cell dimensions a = b = 77.4 A, c = 188.5 A, alpha = beta = 90 degrees, gamma = 120 degrees. SynB crystals have the symmetry of the orthorhombic space group C222(1) with the unit cell dimension a = 104.6 A, b = 113.3 A, and c = 273.8 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号