首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Articular cartilage damage and chondrocyte apoptosis are common features of rheumatoid arthritis and osteoarthritis. Recently, curcumin has been reported to exhibit protective effects on degeneration in articular cartilage diseases. However, the effects and mechanisms of curcumin on articular chondrocyte injury remain to be elucidated. The aim of the present study is to investigate the chondroprotective mechanisms of curcumin on interleukin-1β (IL-1β)-induced chondrocyte apoptosis in vitro. The results revealed that IL-1β decreased cell viability and induced apoptosis in primary articular chondrocytes. Curcumin pretreatment reduced IL-1β-induced articular chondrocyte apoptosis. In addition, treatment with curcumin increased autophagy in articular chondrocytes and protected against IL-1β-induced apoptosis. The curcumin-mediated protection against IL-1β induced apoptosis was abolished when cells were treated with the autophagy inhibitor 3-methyladenine or transfected with Beclin-1 small interfering RNA. Furthermore, IL-1β stimulation significantly increased the phosphorylation levels of nuclear factor (NF)-κB p65 and glycogen synthase kinase-3β, and decreased the phosphorylation levels of β-catenin in articular chondrocytes, and these alterations to the phosphorylation levels were partly reversed by treatment with curcumin. Dual-luciferase and electrophoretic mobility shift assays demonstrated that IL-1β increased NF-κB p65 promoter activity in chondrocytes, and this was also reversed by curcumin. Pretreatment with the NF-κB inhibitor pyrrolidine dithiocarbamate enhanced the protective effects of curcumin on chondrocyte apoptosis, but Wnt/β-catenin inhibitor, XAV-939, did not exhibit this effect. Molecular docking and dynamic simulation studies results showed that curcumin could bound to RelA (p65) protein. These results indicate that curcumin may suppress IL-1β-induced chondrocyte apoptosis through activating autophagy and restraining NF-κB signaling pathway.  相似文献   

2.
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.  相似文献   

3.
4.
Curcumin has been reported to inhibit cell growth and induce apoptosis in oral cancer cells. Although many studies have been done to uncover the mechanisms by which curcumin exerts its antitumor activity, the precise molecular mechanisms remain to be unclear. In the present study, we assessed the effects of curcumin on cell viability and apoptosis in oral cancer. For mechanistic studies, we used multiple cellular and molecular approaches such as gene transfection, real-time RT-PCR, Western blotting, invasion assay, and ELISA. For the first time, we found a significant reduction in cell viability in curcumin-treated cells, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and nuclear factor-κB (NF-κB). Taken together, we conclude that the down-regulation of Notch-1 by curcumin could be an effective approach, which will cause down-regulation of NF-κB, resulting in the inhibition of cell growth and invasion. These results suggest that antitumor activity of curcumin is mediated through a novel mechanism involving inactivation of Notch-1 and NF-κB signaling pathways.  相似文献   

5.
Hypoxia is a universal characteristic of solid tumor and involving cancer metastasis via epithelial-mesenchymal transition (EMT). Nobiletin (3′,4′,5,6,7,8-hexamethoxyflavone), a dietary polymethoxylated flavonoid found in citrus fruits, has been reported to have anticancer effects. However, the possible role of nobiletin in renal cell carcinoma (RCC) remains unclear. Thus, the aim of this study was to identify the effect of nobiletin on hypoxia-induced EMT in RCC cells. We found that nobiletin significantly inhibited the migration and invasion induced by hypoxia in RCC cells. In addition, nobiletin reversed the hypoxia-induced EMT process in RCC cells. Furthermore, nobiletin suppressed the activation of NF-κB and Wnt/β-catenin signaling pathways in hypoxia-stimulated RCC cells. In conclusion, these findings demonstrate that nobiletin inhibits hypoxia-induced EMT in human RCC cells via the inactivation of the NF-κB and Wnt/β-catenin signaling pathways.  相似文献   

6.
Ureter reconstruction is a difficult procedure in urology. Adipose-derived stem cells (ADSCs), along with multipotency and self-renewal capacity, are a preferred choice for tissue engineering-based ureteral reconstruction. We explored the synergic role of cathelicidin LL37 (LL37) in epithelial and smooth-muscle-like differentiation. ADSCs were separated from adipose tissues of mouse and characterized by flow cytometry. The ADSCs were then stably transfected with pGC-FU-GFP (pGC) or pGC containing full-length LL37 (pGC-LL37), respectively. Cell viability and apoptosis were respectively estimated in the stably transfected cells and non-transfected cells. Then, qRT-PCR and Western blot analysis were used for determinations of epithelial marker expressions after induction by all-trans retinoic acid as well as smooth-muscle-like marker expressions after induction by transforming growth factor-β1. Then, possibly involved signaling pathways and extracellular expression of LL37 were detected. Cell viability and apoptosis were not changed after LL37 overexpression. Expression levels of epithelial and smooth-muscle-like markers were significantly upregulated by LL37 overexpression. Moreover, expressions of key kinases involved in the Wnt/β-catenin pathway as well as epithelial marker were upregulated by the LL37 overexpression, while it was reversed by Wnt/β-catenin inhibitor. Likewise, expressions of key kinases involved in the nuclear factor κB (NF-κB) pathway as well as smooth-muscle-like markers were upregulated by LL37 overexpression, which was reversed by NF-κB inhibitor. LL37 was found in the culture medium. LL37, which could be released into the medium, had no impact on cell proliferation and apoptosis of ADSCs. However, LL37 promoted epithelial and smooth-muscle-like differentiation through activating the Wnt/β-catenin and NF-κB pathways, respectively.  相似文献   

7.
8.
9.
Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.  相似文献   

10.
11.
12.
The intracellular level of the proto-oncoprotein β-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the β-catenin concentration in lysates from cells or tissues. The advantages of the method were proven by determining β-catenin levels in cell lines and in cells after activation of the Wnt pathway. Analysis revealed high β-catenin concentrations in the cell lines HeLa, KB, HT1080, MCF-7, U-87 and U-373, which had not been described before. β-Catenin concentrations were compared in HEK293 and C57MG cells after activation of the Wnt pathway. The β-catenin concentrations increased by different factors depending on whether the Wnt pathway was activated by incubation with LiCl or with Wnt-3a-conditioned medium. This finding indicated that the β-catenin level depends on the way and level of Wnt pathway activation. The quantitative analysis of β-catenin in colorectal tumours revealed high β-catenin levels in tumours with truncating mutations in the APC gene.  相似文献   

13.
Microglial inflammation plays an essential role in the pathogenesis of HIV-associated neurocognitive disorders. A previous study indicated that curcumin relieved microglial inflammatory responses. However, the mechanism of this process remained unclear. Autophagy is a lysosome-mediated cell content-dependent degradation pathway, and uncontrolled autophagy leads to enhanced inflammation. The role of autophagy in curcumin-attenuating BV2 cell inflammation caused by gp120 was investigated with or without pretreatment with the autophagy inhibitor 3-MA and blockers of NF-κB, IKK, AKT, and PI3K, and we then detected the production of the inflammatory mediators monocyte chemoattractant protein-1 (MCP-1) and IL17 using ELISA, and autophagy markers ATG5 and LC3 II by Western Blot. The autophagic flux was observed by transuding mRFP-GFP-LC3 adenovirus. The effect of the blockers on gp120-induced BV2 cells was examined by the expression of p-AKT, p-IKK, NF-κB, and p65 in the nuclei and LC3 II and ATG5. gp120 promoted the expression of MCP-1 and IL-17, enhanced autophagic flux, and up-regulated the expression of LC3 II and ATG5, while the autophagy inhibitor 3-MA down-regulated the phenomena above. Curcumin has similar effects with 3-MA, in which curcumin inhibited NF-κB by preventing the translocation of NF-κB p65. Curcumin also inhibited the phosphorylation of p-PI3K, p-AKT, and p-IKK, which leads to down-regulation of NF-κB. Curcumin reduced autophagy via PI3K/AKT/IKK/NF-κB, thereby reducing BV2 cellular inflammation induced by gp120.  相似文献   

14.
JM Kim  EM Noh  KB Kwon  JS Kim  YO You  JK Hwang  BM Hwang  BS Kim  SH Lee  SJ Lee  SH Jung  HJ Youn  YR Lee 《Phytomedicine》2012,19(12):1085-1092
Curcumin (diferuloylmethane) is a polyphenol derived from the plant turmeric (Curcuma longa), which is commonly used as a spice. Although anti-carcinogenic, anti-oxidant, anti-inflammation, and anti-angiogenic properties have been reported, the effect of curcumin on breast cancer metastasis is unknown. Matrix metalloproteinase-9 (MMP-9) is a major component in cancer cell invasion. In this study, we investigated the inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion and the molecular mechanisms involved in MCF-7 cells. Our results showed that curcumin inhibits TPA-induced MMP-9 expression and cell invasion through suppressing NF-κB and AP-1 activation. Also, curcumin strongly repressed the TPA-induced phosphorylation of p38 and JNK and inhibited TPA-induced translocation of PKCα from the cytosol to the membrane, but did not affect the translocation of PKCδ. These results indicate that curcumin-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the PKCα, MAPK and NF-κB/AP-1 pathway in MCF-7 cells. Curcumin may have potential value in restricting breast cancer metastasis.  相似文献   

15.
Liver fibrosis is a grievous global challenge, where hepatic stellate cells (HSCs) activation is a paramount step. This study analyzed the mechanism of Tβ4 in ameliorating liver fibrosis via the MAPK/NF-κB pathway. The liver fibrosis mouse models were established via bile duct ligation (BDL) and verified by HE and Masson staining. TGF-β1-induced activated LX-2 cells were employed in vitro experiments. Tβ4 expression was determined using RT-qPCR, HSC activation markers were examined using Western blot analysis, and ROS levels were tested via DCFH-DA kits. Cell proliferation, cycle, and migration were examined by CCK-8, flow cytometry, and Transwell assays, respectively. Effects of Tβ4 on liver fibrosis, HSC activation, ROS production, and HSC growth were analyzed after transfection of constructed Tβ4-overexpressing lentiviral vectors. MAPK/NF-κB-related protein levels were tested using Western blotting and p65 expression in the nucleus was detected through immunofluorescence. Regulation of MAPK/NF-κB pathway in TGF-β1-induced LX-2 cells was explored by adding MAPK activator U-46619 or inhibitor SB203580. Furthermore, its regulating in liver fibrosis was verified by treating BDL mice overexpressing Tβ4 with MAPK inhibitor or activator. Tβ4 was downregulated in BDL mice. Tβ4 overexpression inhibited liver fibrosis. In TGF-β1-induced fibrotic LX-2 cells, Tβ4 was reduced and cell migration and proliferation were enhanced with elevated ROS levels, while Tβ4 overexpression suppressed cell migration and proliferation. Tβ4 overexpression blocked the MAPK/NF-κB pathway activation by reducing ROS production, thus inhibiting liver fibrosis in TGF-β1 induced LX-2 cells and BDL mice. Tβ4 ameliorates liver fibrosis by impeding the MAPK/NF-κB pathway activation.  相似文献   

16.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   

17.
The intracellular level of the proto-oncoprotein β-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the β-catenin concentration in lysates from cells or tissues. The advantages of the method were proven by determining β-catenin levels in cell lines and in cells after activation of the Wnt pathway. Analysis revealed high β-catenin concentrations in the cell lines HeLa, KB, HT1080, MCF-7, U-87 and U-373, which had not been described before. β-Catenin concentrations were compared in HEK293 and C57MG cells after activation of the Wnt pathway. The β-catenin concentrations increased by different factors depending on whether the Wnt pathway was activated by incubation with LiCl or with Wnt-3a-conditioned medium. This finding indicated that the β-catenin level depends on the way and level of Wnt pathway activation. The quantitative analysis of β-catenin in colorectal tumours revealed high β-catenin levels in tumours with truncating mutations in the APC gene.  相似文献   

18.
Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling) and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug) upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.  相似文献   

19.
Paclitaxel is the most promising chemotherapeutic agent of plant origin despite its high cost and dose-limiting toxicity. Our earlier report has shown that cervical cancer cells can be sensitized by curcumin to paclitaxel-induced apoptosis through down-regulation of NF-κB and Akt. In the present study we have attempted to decipher the signaling pathways regulating the synergism of paclitaxel and curcumin. The study has clearly proved that Akt and NF-κB function successively in the sequence of paclitaxel induced signaling events where Akt is upstream of NF-κB. While inhibition of NF-κB led to complete inhibition of the synergism of paclitaxel and curcumin, inhibition of Akt brought about only partial reduction of the same, suggesting that, apart from Akt, there are other pathways induced by paclitaxel leading to NF-κB activation, which are also down-regulated by curcumin. Inactivation of NF-κB did not affect the activation of Akt and survivin, while that of Akt significantly inhibited NF-κB and completely inhibited up-regulation of survivin. Up-regulation of Cyclin-D1, Cox-2, XIAP and cIAP1 and phosphorylation of MAPKs, were completely inhibited on inactivation of NF-κB assigning a key regulatory role to NF-κB in the synergistic effect of paclitaxel and curcumin. While up-regulation of survivin by paclitaxel is regulated by Akt, independent of NF-κB, inactivation of neither Akt nor NF-κB produced any change in Bcl-2 level suggesting a distinct pathway for its action. As curcumin could effectively down-regulate all these survival signals induced by paclitaxel, we suggest it as a potent chemosensitizer to improve the therapeutic index of paclitaxel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号