首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-chaperon p23 has been well established as molecular chaperon for the heat shock protein 90 (Hsp90) that further leads to immorality in cancer cells by providing defense against Hsp90 inhibitors, and as stimulating agent for generating overexpressed antiapoptotic proteins, that is, Hsp70 and Hsp27. The natural compounds such as catechins from Camellia sinensis (green tea) are also well known for inhibition activity against various cancer. However, molecular interaction profile and potential lead bioactive compounds against co-chaperon p23 from green tea are not yet reported. To this context, we study the various secondary metabolites of green tea against co-chaperon p23 using structure-based virtual screening from Traditional Chinese Medicine (TCM) database. Following 26 compounds were obtained from TCM database and further studied for extra precision molecular docking that showed binding score between −10.221 and −2.276 kcal/mol with co-chaperon p23. However, relative docking score to known inhibitors, that is, ailanthone (−4.54 kcal/mol) and gedunin ( 3.60 kcal/mol) along with ADME profile analysis concluded epicatechin (−7.013 kcal/mol) and cis-theaspirone (−4.495 kcal/mol) as potential lead inhibitors from green tea against co-chaperone p23. Furthermore, molecular dynamics simulation and molecular mechanics generalized born surface area calculations validated that epicatechin and cis-theaspirone have significantly occupied the active region of co-chaperone p23 by hydrogen and hydrophobic interactions with various residues including most substantial amino acids, that is, Thr90, Ala94, and Lys95. Hence, these results supported the fact that green tea contained potential compounds with an ability to inhibit the cancer by disrupting the co-chaperon p23 activity.  相似文献   

2.
The present study was designed to appraise the photoprotective, antioxidant, and antibacterial bioactivities of Ruellia tuberosa leaves extracts (RtPE, RtChl, RtEA, RtAc, RtMe, and RtHMe). The results showed that, RtHMe extracts of R. tuberosa was rich in total phenolic content, i. e., 1.60 mgGAE/g dry extract, while highest total flavonoid content was found in RtAc extract, i. e., 0.40 mgQE/g. RtMe showed effective antioxidant activity (%RSA: 58.16) at the concentration of 120 μL. RtMe, RtEA and RtHMe exhibited effective in vitro antibacterial activity against Gram-negative bacteria (E. coli). In silico docking studies revealed that paucifloside (−11.743 kcal/mol), indole-3-carboxaldehyde (−7.519 kcal/mol), nuomioside (−7.275 kcal/mol), isocassifolioside (−6.992 kcal/mol) showed best docking score against PDB ID 2EX8 [penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-G], PDB ID 6CQA (E. coli dihydrofolate reductase protein complexed with inhibitor AMPQD), PDB ID 2Y2I [Penicillin-binding protein 1B in complex with an alkyl boronate (ZA3)] and PDB ID 2OLV (from S. aureus), respectively. Docked phytochemicals also showed good drug likeness properties.  相似文献   

3.
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   

4.
Developing a safe and effective antiviral treatment takes a decade, however, when it comes to the coronavirus disease (COVID-19), time is a sensitive matter to slow the spread of the pandemic. Screening approved antiviral drugs against COVID-19 would speed the process of finding therapeutic treatment. The current study examines commercially approved drugs to repurpose them against COVID-19 virus main protease using structure-based in-silico screening. The main protease of the coronavirus is essential in the viral replication and is involved in polyprotein cleavage and immune regulation, making it an effective target when developing the treatment. A Number of approved antiviral drugs were tested against COVID-19 virus using molecular docking analysis by calculating the free natural affinity of the binding ligand to the active site pocket and the catalytic residues without forcing the docking of the ligand to active site. COVID-19 virus protease solved structure (PDB ID: 6LU7) is targeted by repurposed drugs. The molecular docking analysis results have shown that the binding of Remdesivir and Mycophenolic acid acyl glucuronide with the protein drug target has optimal binding features supporting that Remdesivir and Mycophenolic acid acyl glucuronide can be used as potential anti-viral treatment against COVID-19 disease.  相似文献   

5.
6.
In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l -glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (−537.96 kcal/mol) and Asp54, Phe116 (−618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 μM and 14.72 μM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.  相似文献   

7.
8.
The importance of 3-O- and 6-O-sulfated glucosamine residues within the heparin octasaccharide iduronic acid(1)----N-acetylglucosamine 6-O-sulfate(2)----glucuronic acid(3)----N-sulfated glucosamine 3,6-di-O-sulfate(4)----iduronic acid 2-O-sulfate(5)----N-sulfated glucosamine 6-O-sulfate(6)----iduronic acid 2-O-sulfate(7)----anhydromannitol 6-O-sulfate(8) was determined by comparing with synthetic tetra- and penta-saccharides its ability to bind human antithrombin. The octasaccharide had an affinity for antithrombin of 1 X 10(-8) M (10.2 kcal/mol) measured by intrinsic fluorescence enhancement at 6 degrees C. The synthetic pentasaccharide, consisting of residues 2-6, had an affinity of 3 X 10(-8) M (9.6 kcal/mol). The same pentasaccharide, except lacking the 3-O-sulfate on residue 4, had an affinity of 5 X 10(-4) M (4.5 kcal/mol) measured by equilibrium dialysis. The tetrasaccharide, consisting of residues 2-5, bound antithrombin with an affinity of 5 X 10(-6) M (6.8 kcal/mol). The tetrasaccharide, consisting of residues 3-6, had an affinity of 5 X 10(-5) M (5.5 kcal/mol). Since the loss of either the 6-O-sulfated residue 2 or the 3-O-sulfate of residue 4 results in a 4-5 kcal/mol or a 40-50% loss in binding energy of the pentasaccharide, these two residues must be the major contributors to the binding and must be linked to the biologic activity of the octasaccharide.  相似文献   

9.
Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (−7.2 to −7.0 kcal/mol) and the cowpea bean dipeptide Lys-Asp (−7.0 kcal/mol) had higher binding affinities than ezetimibe (−6.6 kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (−7.2 kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption.  相似文献   

10.
The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of ?12.8, ?11.9 and ?11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (?9.2 kcal/mol), Indinavir (?8.2 kcal/mol) and Travoprost (?8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from ?63.85 kcal/mol to ?34.57 kcal/mol for MTB LipU and ?71.33 kcal/mol to ?23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.  相似文献   

11.
The increased transmissibility and highly infectious nature of the new variant of concern (VOC) that is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and lack of effective therapy need the rapid discovery of therapeutic antivirals against it. The present investigation aimed to identify antiviral compounds that would be effective against SARS-CoV-2 Omicron. In this study, molecular docking experiments were carried out using the recently reported experimental structure of omicron spike protein in complex with human angiotensin-converting enzyme 2 (ACE2) and various antivirals in preclinical and clinical trial studies. Out of 36 tested compounds, Abemaciclib, Dasatinib and Spiperone are the three top-ranked molecules which scored binding energies of ?10.08 kcal/mol, ?10.06 kcal/mol and ?9.54 kcal/mol respectively. Phe338, Asp339, and Asp364 are crucial omicron receptor residues involved in hydrogen bond interactions, while other residues were mostly involved in hydrophobic interactions with the lead molecules. The identified lead compounds also scored well in terms of drug-likeness. Molecular dynamics (MD) simulation, essential dynamics (ED) and entropic analysis indicate the ability of these molecules to modulate the activity of omicron spike protein. Therefore, Abemaciclib, Dasatinib and Spiperone are likely to be viable drug-candidate molecules that can block the interaction between the omicron spike protein and the host cellular receptor ACE2. Though our findings are compelling, more research into these molecules is needed before they can be employed as drugs to treat SARS-CoV-2 omicron infections.  相似文献   

12.
Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 μM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 μM) across all cell lines, without affecting normal cells (IC50 value is>300 μM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from −5.418 to −9.679 kcal/mol) compared to noscapine (docking score is −5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 μM) was found to bind tubulin with the highest binding affinity (ΔGbinding is −28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.  相似文献   

13.
Heterocyclic molecules are well-known drugs against various diseases including cancer. Many tyrosine kinase inhibitors including erlotinib, osimertinib, and sunitinib were developed and approved but caused adverse effects among treated patients. Which prevents them from being used as cancer therapeutics. In this study, we strategically developed heterocyclic thiazolo-[2,3-b]quinazolinone derivatives by an organic synthesis approach. These synthesized molecules were assessed against the epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) by in silico methods. Molecular docking simulations unravel derivative 17 showed better binding energy scores and followed Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. The binding affinity displayed by synthetic congener and reference molecule erlotinib was found to be ?8.26 ± 0.0033 kcal/mol and ?7.54 ± 0.1411 kcal/mol with the kinase domain. Further, molecular dynamic simulations were conducted thrice to validate the molecular docking study and achieved significant results. Both synthetic derivative and reference molecule attained stability in the active site of the TKD. The synthetic congener and erlotinib showed free energy binding (ΔGbind) ?102.975 ± 3.714 kJ/mol and ?130.378 ± 0.355 kJ/mol computed by Molecular Mechanics Poison Boltzmann Surface Area (MM-PBSA) method. In addition, the motions of each sampled system including the Apo complex were determined by the principal component analysis and Gibbs energy landscape analysis. The in-vitro apoptosis study was performed using MCF-7 and H-1299 cancer cell lines. However, thiazolo-[2,3-]-quinazoline derivative 17 showed fair anti-proliferative activity against MCF-7 and H-1299. Further, the in-vivo study is necessary to determine the effectivity of the potent anti-proliferative, non-toxic molecule against TKD.  相似文献   

14.
An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >?9 kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >?9 kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of ?8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of ?9.8 kcal/mol and ?11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties. This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.  相似文献   

15.
Abstract

Cardiotonic steroids (CTS) are steroidal drugs, processed from the seeds and dried leaves of the genus Digitalis as well as from the skin and parotid gland of amphibians. The most commonly known CTS are ouabain, digoxin, digoxigenin and bufalin. CTS can be used for safer medication of congestive heart failure and other related conditions due to promising pharmacological and medicinal properties. Ouabain isolated from plants is widely utilized in in vitro studies to specifically block the sodium potassium (Na+/K+-ATPase) pump. For checking, whether ouabain derivatives are robust inhibitors of Na+/K+-ATPase pump, molecular docking simulation was performed between ouabain and its derivatives using YASARA software. The docking energy falls within the range of 8.470?kcal/mol to 7.234?kcal/mol, in which digoxigenin was found to be the potential ligand with the best docking energy of 8.470?kcal/mol. Furthermore, pharmacophore modeling was applied to decipher the electronic features of CTS. Molecular dynamics simulation was also employed to determine the conformational properties of Na+/K+-ATPase-ouabain and Na+/K+-ATPase-digoxigenin complexes with the plausible structural integrity through conformational ensembles for 100?ns which promoted digoxigenin as the most promising CTS for treating conditions of congestive heart failure patients.  相似文献   

16.
Background: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function.Purpose: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections.Methods: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp.Results: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 μM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 μM, compared with remdesivir's IC50 value of 6.335 ± 0.731 μM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (−6.2 kcal/mol) were higher than those of remdesivir (−4.7 kcal/mol).Conclusions: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.  相似文献   

17.
Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (−8.6 kcal/mol) with AChE was greater than those of SCG (−7.9 kcal/mol) and DB (−8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer’s disease.  相似文献   

18.
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (−9.63 to −7.36 kcal/mmol) were comparable to WR99210 (−9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).  相似文献   

19.
This computational study investigates 21 bioactive compounds from the Asteraceae family as potential inhibitors targeting the Spike protein (S protein) of SARS-CoV-2. Employing in silico methods and simulations, particularly CDOCKER and MM-GBSA, the study identifies two standout compounds, pterodontic acid and cichoric acid, demonstrating robust binding affinities (−46.1973 and −39.4265 kcal/mol) against the S protein. Comparative analysis with Favipiravir underscores their potential as promising inhibitors. Remarkably, these bioactives exhibit favorable ADMET properties, suggesting safety and efficacy. Molecular dynamics simulations validate their stability and interactions, signifying their potential as effective SARS-CoV-2 inhibitors.  相似文献   

20.
Although the aberrant activity of fibroblast growth factor receptor 3 (FGFR3) is implicated in various cancers, the reported kinase inhibitors of FGFR3 tend to cause side effects resulting from the inhibitory activity on vascular endothelial growth factor receptor 2 (VEGFR2). Therefore, it is necessary to find a novel high-selective inhibitor of FGFR3 over VEGFR2 from the small-molecule compound database. In this study, integrated virtual screening protocols were established to screen for selective inhibitors of FGFR3 over VEGFR2 in Drugbank and Asinex databases by combining three-dimensional pharmacophore model, molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson–Boltzmann surface area (MMPBSA) calculations. Finally, it is found that Asinex-5082, as an octahydropyrrolo[3,2-b] pyridin derivative, has larger binding free energy with FGFR3 (−39.3 kcal/mol) than reference drug Erdafitinib (−29.9 kcal/mol), while cannot bind with VEGFR2, resulting in considerable inhibitory selectivity. This is because Asinex-5082, unlike Erdafitinib, has not m-dimethoxybenzene with large steric hindrance, thus can enter the larger ATP-binding pocket of FGFR3 with DFG-in conformation to form hydrophobic interaction with residues Met529, Ile539, and Tyr557 as well as hydrogen bond with Ala558. On the other hand, due to the fact that the benzodioxane and N-heterocyclic rings are connected by carbonyl (C=O), Asinex-5082 cannot rotate freely so as to enter the smaller ATP binding pocket of VEGFR2 on the DFG-out conformation. The lead molecule Asinex-5082 may facilitate the rational design and development of novel selective inhibitors of FGFR3 over VEGFR2 as anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号