首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

2.
Glioma is the most aggressive malignant tumor in the adult central nervous system. Abnormal long noncoding RNA (lncRNA) FOXD2-AS1 expression was associated with tumor development. However, the possible role of FOXD2-AS1 in the progression of glioma is not known. In the present study, we used in vitro and in vivo assays to investigate the effect of abnormal expression of FOXD2-AS1 on glioma progression and to explore the mechanisms. FOXD2-AS1 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of FOXD2-AS1 was correlated with poor prognosis of glioma. Downregulation of FOXD2-AS1 decreased cell proliferation, migration, invasion, stemness, and epithelial-mesenchymal transition (EMT) in glioma cells and inhibited tumor growth in transplanted tumor. We also revealed that FOXD2-AS1 was mainly located in cytoplasm and microRNA (miR)-185-5p both targeted FOXD2-AS1 and CCND2 messenger RNA (mRNA) 3′-untranslated region (3′-UTR). miR-185-5p was downregulated in glioma tissue, cells, and sphere subpopulation. Downregulation of miR-185-5p was closely correlated with poor prognosis of glioma patients. In addition, miR-185-5p mimics decreased cell proliferation, migration, invasion, stemness, and EMT in glioma cells. CCND2 was upregulated in glioma tissue, cells, and sphere subpopulation. Upregulation of CCND2 was closely correlated with poor prognosis of glioma patients. CCND2 knockdown decreased cell proliferation, migration, invasion, and EMT in glioma cells. In glioma tissues, CCND2 expression was negatively associated with miR-185-5p, but positively correlated with FOXD2-AS1. FOXD2-AS1 knockdown and miR-185-5p mimics decreased CCND2 expression. Inhibition of miR-185-5p suppressed FOXD2-AS1 knockdown-induced decrease of CCND2 expression. Overexpression of CCND2 suppressed FOXD2-AS1 knockdown-induced inhibition of glioma malignancy. Taken together, our findings highlight the FOXD2-AS1/miR-185-5p/CCND2 axis in the glioma development.  相似文献   

3.
Hepatocellular carcinoma (HCC) is the most common cancer and its prognosis is poor due to metastasis and recurrence. EMT is associated with metastasis. A deep understanding of regulatory mechanism of EMT is critical. LncRNA is involved in regulation of various biological processes including EMT. This study aimed to investigate the regulatory signal axis among lncRNA SNHG12, miR-516a-5p and the target gene HEG1 during EMT. Cell cycle and apoptosis were analyzed by flow cytometry. Tumorigenesis was analyzed by clone formation assay. Wound healing assay and transwell assay was performed to detect migration and invasion, respectively. Interaction among SNHG12, miR-516a-5p and HEG1 were analyzed by dual luciferase assay and RIP assay. We also detected expression of RNA and protein by QPCR and western blotting. Finally, tumor growth was analyzed by tumorigenesis assay in vivo. Ki-67 and HEG1 level in tumor tissues was analyzed by IHC. SNHG12 and HEG1 were upregulated, miR-516a-5p was downregulated in HCC cell lines. SNHG12 could interact with and inhibit miR-516a-5p. MiR-516a-5p could interact with HEG1 and inhibit HEG1 expression. Knock down SNHG12 inhibited proliferation, migration, invasion, EMT and promoted apoptosis of HCC cells. Such effects were antagonized by inhibiting miR-516a-5p. SNHG12 overexpression lead to opposite results. Similar results were observed in mice. SNHG12 could promote EMT in HCC through targeting and inhibiting miR-516a-5p, which eventually upregulated HEG1 expression, in both cell and mice.  相似文献   

4.
Zhang  Qian  Wei  Jingli  Li  Na  Liu  Bailing 《Neurochemical research》2022,47(8):2278-2293

Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Increasing long non-coding RNAs (lncRNAs) are reported to be associated with NB tumorigenesis and aggressiveness. Here, we attempted to investigate the biological functions of LINC00839 in NB progression as well as its possible pathogenic mechanisms. Public microarray datasets were applied to unearth the abnormally expressed lncRNAs in NB. RT-qPCR analysis was used to measure the expression of LINC00839, miR-454-3p, and neuronal differentiation 1 (NEUROD1) mRNA. The protein level was determined by a western blot assay. CCK-8, plate clone formation, EdU, wound-healing scratch, and transwell assays were employed to evaluate cell proliferation, migration, and invasion. Xenografts were developed in nude mice to determine the effects of LINC00839 on NB tumor growth. Dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments were performed to identify the interaction between miR-454-3p and LINC00839 or NEUROD1. According to GSE datasets (GSE16237 and GSE16476), LINC00839 was found as a potential driver of NB progression. LINC00839 expression was higher in NB tumor tissues and cells. Also, LINC00839 expression was positively correlated with MYCN amplification, advanced INSS stages, and worse prognosis. Silencing of LINC00839 suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, LINC00839 could act as a sponge of miR-454-3p to facilitate the expression of its target NEUROD1. Moreover, miR-454-3p was demonstrated to exert an anti-cancer activity in NB. More importantly, the tumor-suppressive properties mediated by LINC00839 knockdown were significantly counteracted by the inhibition of miR-454-3p or overexpression of NEUROD1. Our study demonstrates that LINC00839 exerts an oncogenic role in NB through sponging miR-454-3p to up-regulate NEUROD1 expression, deepening our comprehension of lncRNA involved in NB and providing access to the possibility of LINC00839 as a therapeutic target for NB.

  相似文献   

5.
MicroRNAs (miRNAs) act as key regulators of multiple cancers. miR-329 functions as a tumor suppressor in some malignancies. However, its role in neuroblastoma remains poorly understood. We found that miR-329 was decreased in metastatic tumor tissues compared with matched primary tumor tissues. Forced overexpression of miR-329 substantially suppressed cell proliferation, colony formation, migration, and invasion of neuroblastoma cells. Lysine-specific demethylase 1 (KDM1A) was found to be a target of miR-329. Furthermore, down-regulation of KDM1A by shRNA performed similar effects with overexpression of miR-329. Overexpression of KDM1A partially reversed the tumor suppressive effects of miR-329 in neuroblastoma cells. Collectively, miR-329 may suppress neuroblastoma cell growth and motility partially by targeting KDM1A.  相似文献   

6.
MicroRNAs (miRNAs) play crucial roles in various biological processes, including migration, proliferation, differentiation, cell cycling, and apoptosis. Epithelial-mesenchymal transition (EMT) has been shown to be related to the capability of migration and invasion in many tumor cells. In this study, we used wound-healing assay and transwell invasion to analysis the capability of migration and invasion in non–small-cell lung carcinoma (NSCLC), respectively. The expression of ubiquitin-specific protease-9-X-linked (USP9X) and miR-212 messenger RNA (mRNA) was determined by quantitative real-time polymerase chain reaction and Western blot analysis was used to determine the E-cadherin and vimentin expression. Our results showed that miR-212 mimic inhibited cell migration and invasion, while miR-212 inhibitor increased cell migration and invasion. There was no significant difference between WP1130 and miR-212 mimic combined with WP1130 groups. Moreover, WP1130 inhibited the capability of the migration and invasion of NSCLC cells. Western blot analysis displayed that miR-212 mimic upregulated E-cadherin expression and downregulated vimentin expression, while miR-212 inhibitor downregulated E-cadherin and upregulated vimentin expression. These data showed that miR-212 regulated NSCLC cell invasion and migration by regulating USP9X expression. Taken together, these findings indicated that miR-212 regulated NSCLC cells migration and invasion through targeting USP9X involved in EMT.  相似文献   

7.
Studies have found that miR-665 acted as a tumor suppressor or an oncogene in different malignancies. miR-665 expression was elevated in gastric adenocarcinoma tissues; however, its role and mechanism in this disease are not fully clarified. The expression of miR-665 and its target gene was detected in human gastric adenocarcinoma tissues and cells. Moreover, we analyzed the effects of miR-665 on the proliferation, migration, and epithelial–mesenchymal transition (EMT) of gastric adenocarcinoma cells as well as tumor growth in vivo. The mechanisms of miR-665 in gastric adenocarcinoma were investigated by using molecular biology techniques. We found miR-665 was upregulated and suppressor of cytokine signaling 3 (SOCS3) was downregulated in gastric adenocarcinoma tissues and cells. Elevated miR-665 was positively correlated with tumor size, lymph node metastasis, invasion depth, TNM stage, and poor differentiation in gastric adenocarcinoma patients. Overexpression of miR-665 promoted, whereas knockdown of miR-665 suppressed the proliferation, migration, and EMT of gastric adenocarcinoma cells. Furthermore, we demonstrated that miR-665 functioned through targeting SOCS3, followed by activation of the FAK/Src signaling pathway in gastric adenocarcinoma cells. miR-665 antagomir inhibited tumor growth as well as the activation of the FAK/Src pathway but increased SOCS3 expression in nude mice. In addition, miR-665 expression was negatively regulated by long noncoding RNA maternally expressed gene 3 (MEG3). In conclusion, miR-665 acted as an oncogene in gastric adenocarcinoma by inhibiting SOCS3 followed by activation of the FAK/Src pathway and it was negatively modulated by MEG3. miR-665 may be a promising therapeutic target for the treatment of gastric adenocarcinoma.  相似文献   

8.
Prostate cancer (PCa) is one of the leading causes of deaths in America. The major cause of mortality can be attributed to metastasis. Cancer metastasis involves sequential and interrelated events. miRNAs and epithelial-mesenchymal transition (EMT) are implicated in this process. miR-195 is downregulated in many human cancers. However, the roles of miR-195 in PCa metastasis and EMT remain unclear. In this study, data from Memorial Sloan Kettering Cancer Center (MSKCC) prostate cancer database were re-analysed to detect miR-195 expression and its roles in PCa. miR-195 was then overexpressed in castration-resistant PCa cell lines, DU-145 and PC-3. The role of miR-195 in migration and invasion in vitro was also investigated, and common markers in EMT were evaluated through Western blot analysis. A luciferase reporter assay was conducted to confirm the target gene of miR-195; were validated in PCa cells. In MSKCC data re-analyses, miR-195 was poorly expressed in metastatic PCa; miR-195 could be used to diagnose metastatic PCa by measuring the corresponding expression. Area under the receiver operating characteristic curve (AUC-ROC) was 0.705 (P = 0.017). Low miR-195 expression was characterised with a shorter relapse-free survival (RFS) time. miR-195 overexpression suppressed cell migration, invasion and EMT. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-195. FGF2 knockdown also suppressed migration, invasion and EMT; by contrast, increased FGF2 partially reversed the suppressive effect of miR-195. And data from ONCOMINE prostate cancer database showed that PCa patients with high FGF2 expression showed shorter RFS time (P = 0.046). Overall, this study demonstrated that miR-195 suppressed PCa cell metastasis by downregulating FGF2. miR-195 restoration may be considered as a new therapeutic method to treat metastatic PCa.  相似文献   

9.
MicroRNA-17-5p (miR-17-5p) and epithelial-mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR-17-5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR-17-5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real-time PCR was used to detect the miR-17-5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR-17-5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit-8, the annexin V-FITC apoptosis, wound-healing, and transwell assays. The SRCIN1 was validated as a target of the miR-17-5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E-cadherin, N-cadherin, and Snail was identified by the Western blot analysis. MiR-17-5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR-17-5p. Silenced miR-17-5p could change the expression of EMT markers, such as upregulating the expression of E-cadherin, and downregulating the expression of N-cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR-17-5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR-17-5p/SRCIN1/EMT signaling pathway involved in the progression of OS.  相似文献   

10.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

11.
Melanoma is responsible for the majority of deaths caused by skin cancer. Antitumor activity of microRNA-329 (miR-329) has been seen in several human cancers. In this study, we identify whether miR-329 serves as a candidate regulator in melanoma. Melanoma-related differentially expressed genes were screened with its potential molecular mechanism predicted. Melanoma tissues and pigmented nevus tissues were collected, where the levels of miR-329 and high-mobility group box 2 (HMGB2) were determined. To characterize the regulatory role of miR-329 on HMGB2 and the β-catenin pathway in melanoma cell activities, miR-329 mimics, miR-329 inhibitors, and siRNA-HMGB2 were transfected into melanoma cells. Cell viability, migration, invasion, cell cycle, and apoptosis were assessed. miR-329 was predicted to influence melanoma by targeting HMGB2 via the β-catenin pathway. High level of HMGB2 and low miR-329 expression were observed in melanoma tissues. HMGB2 was targeted and negatively regulated by miR-329. In melanoma cells transfected with miR-329 mimics or siRNA-HMGB2, cell proliferation, migration, and invasion were impeded, yet cell cycle arrest and apoptosis were promoted, corresponding to decreased levels of β-catenin, cyclin D1, and vimentin and increased levels of GSK3β and E-cadherin. Collectively, our results show that miR-329 can suppress the melanoma progression by downregulating HMGB2 via the β-catenin pathway.  相似文献   

12.
13.
Glioma, an aggressive tumor in brain, presents a very poor prognosis. Emerging evidence has demonstrated that dysfunction of long noncoding RNAs (lncRNAs) is closely related to giloma development. However, the roles of lncRNA BLACAT1 in glioma are not unknown. In this study, we utilized in vitro and in vivo experiments to explore the effects of BLACAT1 on glioma cells. BLACAT1 levels were increased in glioma tissues. Upregulation of BLACAT1 showed poor prognosis. Silencing of BLACAT1 markedly repressed glioma proliferation, migration, and invasion, and suppressed glioma growth in vivo. We also illustrated that BLACAT1 worked as the sponge for miR-605-3p and promoted VASP expression. miR-605-3p was downregulated in glioma and repressed glioma proliferation, migration, and invasion. And VASP is upregulated and contributed to glioma progression. Summarily, this study highlights the important roles of BLACAT1/miR-605-3p/VASP axis in glioma progression.  相似文献   

14.
15.
Laryngeal squamous cell carcinoma (LSCC) is a very common neoplasm of the head and neck in the world. Long noncoding RNAs play key roles in cell infiltration, fate, apoptosis, and invasion. However, the functional role and expression of LINC00339 remains unclear in LSCC. In this study, we showed that the expression level of LINC00339 was upregulated in LSCC tissues and cell lines. LINC00339 silencing suppressed the proliferation, invasion, and epithelial-mesenchymal transition (EMT) progression of LSCC cells. In addition, we showed that LINC00339 acted as a sponge of miR-145, and LINC00339 silencing promoted the expression of miR-145 in Hep2 cell. Furthermore, the expression of miR-145 was lower in LSCC tissues than in their paired normal samples and the miR-145 expression level was negatively correlated with LINC00339 expression in LSCC tissues. The knockdown of miR-145 promoted the proliferation, invasion, and EMT progression of LSCC cells. Finally, we indicated that LINC00339 silencing inhibited the proliferation, invasion, and EMT progression of LSCC cells by suppressing the miR-145 expression. These data suggested that LINC00339 acted as an oncogene in the development of LSCC, partly by regulating the miR-145 expression.  相似文献   

16.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

17.
Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.  相似文献   

18.
Prostate cancer (PCa) is one of the major cancers affecting males with high mortality around the world. Recent studies have found that some long noncoding RNAs play a critical part in the cellular processes of PCa. In our study, aberrant expressed lymphoid enhancer-binding factor-1 antisense RNA 1 (LEF1-AS1), microRNA-330-5p (miR-330-5p), and lymphoid enhancer-binding factor-1 (LEF1) were screened out from a microarray database, the role of the novel noncoding RNA regulatory circuitry in the initiation and development of PCa was investigated. LEF1-AS1 and LEF1 were highly expressed while miR-330-5p was poorly expressed in PCa. Following that, the PCa PC-3 cell line was adopted for subsequently experiments, in which the expression of LEF1-AS1 and miR-330-5p was subsequently altered by means of exogenous transfection. After that, the effects of up- or downregulation of LEF1-AS1 and miR-330-5p on epithelial–mesenchymal transition (EMT) and the cell ability for proliferation, invasion, migration in vitro, and tumorigenesis and lymph node metastasis (LNM) in vivo were evaluated. RNA crosstalk revealed that LEF1-AS1 bound to miR-330-5p and LEF1 was the target gene of miR-330-5p. Silenced LEF1-AS1 or elevated miR-330-5p exhibited inhibited EMT processes, reduced ability of proliferation, invasion and migration, coupling with decreased tumorigenesis and LNM in nude mice. The key findings of this study collectively propose downregulation of LEF1-AS1 competing with miR-330-5p to inhibit EMT, invasion and migration of PCa by LEF1 repression.  相似文献   

19.
20.
Laryngeal cancer is one of the most malignant cancers among the head and neck malignant tumors. Abnormal expression of microRNAs (miRNAs) contributes to cancer development through regulating proliferation and apoptosis of cancer cells. In this study, we aim to explore the roles of microRNA-141 (miR-141), Homeobox C6 (HOXC6) and TGF-β signaling pathway in epithelial-mesenchymal transition (EMT) and lymph node metastasis in laryngeal cancer. Initially, we identified differentially expressed genes in laryngeal cancer, among which HOXC6 was identified. Then the target miRNA of HOXC6 was predicted and verified. Next, expression of miR-141, HOXC6, TGF-β1, Smad3, Vimentin and Snail in cancer tissues was detected. Then, AMC-HN-8 cells were transfected with miR-141 mimic, miR-141 inhibitor and HOXC6-siRNA to investigate specific role of miR-141, HOXC6 and TGF-β signaling pathway in laryngeal cancer in vivo and in vitro. Our results showed that HOXC6 was a target gene of miR-141, which was downregulated in laryngeal cancer. Besides, overexpression of miR-141 could downregulate HOXC6 and inhibit the TGF-β signaling pathway. Upregulation of miR-141 or silencing of HOXC6 can repress EMT, viability, migration and invasion abilities of laryngeal cancer cells. In addition, upregulation of miR-141 inhibited the tumor growth and lymph node metastasis in vivo. In summary, our findings demonstrated that upregulated miR-141 decreased HOXC6 expression, and inhibited the TGF-β signaling pathway, EMT and lymph node metastasis in laryngeal cancer, which is of clinical significance in the treatment of laryngeal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号