首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kisspeptin (Kp) expression in testis has caused most of the recent research surveying its functional role in this organ. This peptide influences spermatogenesis and sperm capacitation, so it is considered as a regulator of reproduction. Kp roles exert through hypothalamic/pituitary/gonadal axis. We aimed to evaluate direct roles for Kp on proliferation and differentiation of spermatogonial cells (SCs) when the cells are cocultured with somatic cells. Somatic cells and SCs were isolated from adult azoospermic and newborn mice and then enriched using a differential attachment technique. After the evaluation of identity and colonization for SCs, the cells were cocultured with somatic cells, and three doses of Kp (10−8-10−6 M) was assessed on proliferation (through evaluation of MVH and ID4 markers) and differentiation (via evaluation of c-Kit and SCP3, TP1, TP2, and, Prm1 markers) of the coculture system. Investigations were continued for four succeeding weeks. At the end of each level of testosterone in the culture media was also evaluated. We found positive influence from Kp on proliferative and differentiative markers in SCs cocultured with somatic cells. These effects were dose-dependent. There was no effect for Kp on testosterone level. From our findings, we simply conclude that Kp as a neuropeptide for influencing central part of reproductive axis could also positively affect peripheral processes related to spermatogenesis without having an effect on steroidogenesis.  相似文献   

2.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

3.
Endocrine regulation of male fertility by the skeleton   总被引:2,自引:0,他引:2  
Oury F  Sumara G  Sumara O  Ferron M  Chang H  Smith CE  Hermo L  Suarez S  Roth BL  Ducy P  Karsenty G 《Cell》2011,144(5):796-809
Interactions between bone and the reproductive system have until now been thought to be limited to the regulation of bone remodeling by the gonads. We now show that, in males, bone acts as a regulator of fertility. Using coculture assays, we demonstrate that osteoblasts are able to induce testosterone production by the testes, though they fail to influence estrogen production by the ovaries. Analyses of cell-specific loss- and gain-of-function models reveal that the osteoblast-derived hormone osteocalcin performs this endocrine function. By binding to a G protein-coupled receptor expressed in the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression of enzymes that is required for testosterone synthesis, promoting germ cell survival. This study expands the physiological repertoire of osteocalcin and provides the first evidence that the skeleton is an endocrine regulator of reproduction.  相似文献   

4.
Both the cell and the species specificities of the steroidogenic potentiating activity (SPA) of Sertoli cells on Leydig cells were studied using a coculture system. Coculture of purified pig Leydig cells with rat or pig Sertoli cells in the presence of FSH led in both cases, to a significant increase in hCG receptor number and in hCG-stimulated testosterone production. Similarly, coculture of bovine adrenal cells with rat or pig Sertoli cells enhanced the steroidogenic response of adrenal cells to ACTH and angiotensin II. Such effects were not observed when pig Leydig cells or bovine adrenal cells were cocultured with bovine aortic endothelial cells. Coculture of Sertoli and Leydig cells in the presence of hCG, resulted in a significant increase in FSH receptor number and in FSH-induced plasminogen activator activity. Such effects did not occur when Sertoli cells were cocultured with either adrenal or aortic endothelial cells.  相似文献   

5.
Sertoli cells (SCs) play a central role in the development of germ cells within functional testes and exhibit varying morphology during spermatogenesis. This present study investigated the seasonal morphological changes in SCs in the reproductive cycle of Pelodiscus sinensis by light microscopy, transmission electron microscopy (TEM), and immunohistochemistry. During hibernation period with the quiescent of spermatogenesis, several autophagosomes were observed inside the SCs, the processes of which retracted. In early spermatogenesis, when the germ cells started to proliferate, the SCs contained numerous lipid droplets instead of autophagosomes. In late spermatogenesis, the SCs processes became very thin and contacted several round/elongated spermatids in pockets. At this time, abundant endoplasmic reticulum and numerous mitochondria were present in the SCs. The organization of the tight junctions and the adherens junctions between the SCs and germ cells also changed during the reproductive cycle. Moreover, SCs were involved in the formation of cytoplasmic bridges, phagophores, and exosome secretions during spermatogenesis. Tubulobulbar complexes (TBC) were also developed by SCs around the nucleus of the spermatid at the time of spermiation. Strong, positive expression of vimentin was noted on the SCs during late spermatogenesis compared with the hibernation stage and the early stage of spermatogenesis. These data provide clear cytological evidence about the seasonal changes in SCs, corresponding with their different roles in germ cells within the Chinese soft‐shelled turtle Pelodiscus sinensis.  相似文献   

6.
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-alpha abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.  相似文献   

7.
Hypoxia has been shown to stimulate the expression of vascular endothelial growth factor (VEGF), which is a major mediator for angiogenesis and vasculogenesis. During hypoxia, VEGF promotes angiogenesis in the testis. However, the effect of VEGF on the steroidogenesis of testosterone and the cell proliferation in Leydig cells is unclear. To assess the effects and the action mechanisms of hypoxia, a mouse TM3 Leydig cell line was employed in the present study. The Leydig cells were incubated in an incubator chamber (95% N2-5% CO2) for 1-24 h. The cultured media were collected and assayed by testosterone RIA and VEGF enzyme immunoassay. 3-(4,50-Dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide assay was used to detect the proliferation of Leydig cells. The present results showed that the proliferation of Leydig cells was enhanced significantly by hypoxia. The basal VEGF release was increased, and the response of VEGF production to human chorionic gonadotropin (hCG) was also enhanced in hypoxic condition. During hypoxia, administration of hCG or VEGF stimulated proliferation of Leydig cells, but the stimulatory effect was abolished by the administration of anti-VEGF antibody. Higher doses of VEGF stimulated testosterone release in a dose-dependent manner. Administration of anti-VEGF antibody abolished the stimulatory effect of VEGF on testosterone release. These data suggest that hypoxia stimulates cell proliferation and testosterone release in Leydig cells via an increase of VEGF production.  相似文献   

8.
Summary Calcium and intracellular Ca2+-binding proteins are possibly involved in hormone production and spermatogenesis in rat testis. Parvalbumin, calbindin D-28K, S-100 proteins and calmodulin were localized in the Leydig cells, which are sites of testosterone synthesis. Only the appearance of parvalbumin-immunoreactivity is closely correlated to testosterone production during development of the testes. Calbindin D-28K-immunoreactivity persisted in foetal-type Leydig cells and in adult-type Leydig cells at all stages of development. S-100-immunoreactivity was low during all foetal stages, absent between birth and puberty, and increased thereafter. Calmodulin staining is most prominent in the cytoplasm of developing spermatocytes and of maturing spermatids. All four proteins co-exist in the seminiferous tubules. The distinct localization and developmental appearance of these proteins suggests different regulatory roles in Leydig cell function and spermatogenesis.  相似文献   

9.
Androgens are especially important for the maintenance of spermatogenesis in adulthood and the experimental withdrawal of testosterone (T) production by ethane dimenthanesulfonate (EDS) is a valuable tool for studying androgen-dependent events of spermatogenesis. The aim of the present study was to investigate the specific changes in immunoexpression of androgen receptor (AR) in the testis in relation to degeneration and regeneration of Leydig cell (LC) population and seminiferous epithelium. Immunohistochemistry for AR and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) as well as TUNEL assay for apoptosis were performed on testicular sections of control and EDS-treated rats. Serum LH and T levels were measured by RIA. Our results revealed a total loss of AR immunoexpression from the nuclei of Sertoli (SCs), LCs and peritubular cells during the first week after EDS administration and that coincided with severe drop in T levels. Two weeks after EDS administration, the AR expression was recovered in these cells but normal stage-specificity in SCs was replaced by uniform intensity of AR immunostaining at all the stages of the spermatogenic cycle. The stage-specific pattern of androgen expression in SCs with a maximum at stages VII-VIII appeared 5 weeks after treatment. LC immunoreactivity for 3beta-HSD at different time points after EDS administration correlated with values of T concentration. The maximal germ cell apoptosis on day 7 was followed by total loss of elongated spermatids 2 weeks after EDS treatment. Regeneration of seminiferous epithelium 3 weeks after EDS administration and onwards occurred in tandem with the development of new LC population indicated by the appearance of 3beta-HSD-positive cells and gradual increase in T production. The specific changes in AR after EDS including their loss and recovery in Sertoli cells paralleled with degenerative and regenerative events in Leydig and germ cell populations, confirming close functional relationship between Sertoli, Leydig and germ cells.  相似文献   

10.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

11.
Sertoli cells (SCs) are presumed to be the center of testis differentiation because they provide both structural support and biological regulation for spermatogenesis. Previous studies suggest that SCs control germ cell (GC) count and Leydig cell (LC) development in mouse testes. However, the regulatory role of SCs on peritubular myoid (PTM) cell fate in fetal testis has not been clearly reported. Here, we employed Amh‐Cre; diphtheria toxin fragment A (DTA) mouse model to selectively ablate SCs from embryonic day (E) 14.5. Results found that SC ablation in the fetal stage caused the disruption of testis cords and the massive loss of GCs. Furthermore, the number of α‐smooth muscle actin‐labeled PTM cells was gradually decreased from E14.5 and almost lost at E18.5 in SC ablation testis. Interestingly, some Ki67 and 3β‐HSD double‐positive fetal LCs could be observed in Amh‐Cre; DTA testes at E16.5 and E18.5. Consistent with this phenomenon, the messenger RNA levels of Hsd3b1, Cyp11a1, Lhr, Star and the protein levels of 3β‐HSD and P450Scc were significantly elevated by SC ablation. SC ablation appears to induce ectopic proliferation of fetal LCs although the total LC number appeared reduced. Together, these findings bring us a better understanding of SCs’ central role in fetal testis development.  相似文献   

12.
The effects of single or combined daily treatment with an LHRH agonist and low or high doses of LH upon the testes of adult hypophysectomized rats were studied for up to 2 weeks in which changes in testicular histology, particularly the interstitial tissue, were examined by morphometry and related to functional assessment of the Leydig cells in vivo and in vitro. Compared to saline-treated controls, LHRH agonist treatment did not alter testis volume or the composition of the seminiferous epithelium or any of the interstitial tissue components although serum testosterone and in-vitro testosterone production by isolated Leydig cells were significantly reduced. With 2 micrograms LH for treatment, testis volume was increased, spermatogenesis was qualitatively normal, total Leydig cell volume was increased, serum testosterone values were initially elevated but subsequently declined and in-vitro testosterone production was enhanced. Testis volume with 20 micrograms LH treatment was unchanged compared to saline treatment, the seminiferous epithelium exhibited severe disruption but total Leydig cell volume was greatly increased due to interstitial cell hyperplasia. This group showed elevated serum testosterone concentrations and major increases in testosterone production in vitro. Treatment with LHRH agonist with either dose of LH resulted in reduced testis volume, moderate to very severe focal spermatogenic disruption and increased total Leydig cell volume although serum testosterone values and in-vitro testosterone production were markedly reduced compared to control rats. It is concluded that, in the absence of the pituitary, LHRH agonist fails to disrupt spermatogenesis and the previously described antitesticular action of LHRH agonists in intact rats is therefore dependent upon the presence of LH, which alone or in combination with LHRH agonist, may focally disrupt spermatogenesis in hypophysectomized rats whereas the Leydig cells undergo hyperplasia. The findings show that impairment of spermatogenesis is accompanied by alterations of the interstitial tissue and suggest that communication between these two compartments is involved in the regulation of testicular function.  相似文献   

13.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In order to promote better understanding of the physiological roles of prostaglandin F in the mouse testis, we investigated the protein expression and the cellular localization of the enzymes cyclooxygenase and prostaglandin F synthase that are essential for the production of prostaglandin F, and the binding site, which is the prostaglandin Freceptor (FP). Western blot exhibited the expression of FP protein in wild type mouse testis, and that of prostaglandin F synthase and cyclooxygenase-1 proteins in the both of wild type mouse and FP-deficient mouse testes. The expression of prostaglandin F synthase and cyclooxygenase-1 were detected intensely in Leydig cell-rich fraction, and that of FP was detected equally in Leydig cell-rich fraction and the other fraction. Immunohistochemistry for cyclooxygenase-1 and prostaglandin F synthase demonstrated their co-localization in mouse Leydig cells. Histochemistry for FP demonstrated the localization in Leydig cells and in spermatids of seminiferous tubules. Double histochemical staining confirmed the co-localization of cyclooxygenase-1, prostaglandin F synthase and FP in the Leydig cells. These findings indicate that prostaglandin F may have an effect on the functions of Leyding cells in an autocrine fashion. It implies that prostaglandin F synthase and FP are involved in the control of testosterone release from Leydig cells and in spermatogenesis via the local pathway and the hypothalamo-hypophysial-testis pathway, and affect the testicular function.  相似文献   

15.
Hyperprolactinemia-induced hypogonadism has been linked to a dysfunction of the hypothalamus-pituitary-testis axis. The direct inhibitory effects of prolactin on the testicular release of testosterone have also been demonstrated, though their mechanisms remain unclear. Incubation of rat testicular interstitial cells (TICs) with prolactin stimulated the release of testosterone. TICs from rats with anterior pituitary-grafting-induced hyperprolactinemia release lower amounts of testosterone than controls. However, Leydig cells isolated from anterior pituitary-grafted rats release a greater amount of testosterone. These paradoxical observations have remained unexplained. This study examined the roles of testicular interstitial macrophages and of their product, tumor necrosis factor-alpha (TNF-alpha), in regulating Leydig cells under condition of hyperprolactinemia. Hyperprolactinemia was induced by grafting two anterior pituitary glands of rats under the renal capsule. Control animals were grafted with rat cortex tissue. The rats were sacrificed 6 weeks later. TICs and macrophages, and Leydig cells were isolated for in vitro incubation and drugs challenge. Testosterone released by testicular interstitial or Leydig cells was measured by radioimmunoassay. TNF-alpha concentration in the medium of TICs or macrophages was measured by enzyme-linked immunosorbent assay (ELISA). A dose-dependent stimulation of TNF-alpha secretion in the medium of TICs or macrophages by the prolactin challenge was observed. Higher amounts of TNF-alpha were released by TICs in the anterior pituitary-grafted rats than in the control group. In contrast, the release of TNF-alpha by testicular interstitial macrophages isolated from the anterior pituitary- and cortex-grafted groups was quantitatively similar. Challenge with human chorionic gonadotropin did not modify the TNF-alpha release by testicular interstitial macrophages in either group. Challenge of Leydig cells with TNF-alpha inhibited their release of testosterone stimulated by human chorionic gonadotropin, but not their basal testosterone release. These different patterns of testosterone release in TICs versus Leydig cells cultures in anterior pituitary-grafted rats may be due to the influence of testicular interstitial macrophages. These observations correlate with in vivo conditions, where prolactin increases the release of TNF-alpha by testicular interstitial macrophages, which, in turn, decreases the human chorionic gonadotropin-stimulated release of testosterone by Leydig cells. In summary, hyperprolactinemia-induced hypogonadism involves a mechanism of prolactin-originated, macrophage-mediated inhibitory regulation of testosterone release by Leydig cells. TNF-alpha, one of the cytokines secreted by macrophages, may play a key role in this mechanism.  相似文献   

16.
Propylthiouracil (PTU) is a thioamide drug used clinically to inhibit thyroid hormone production. However, PTU is associated with some side effects in different organs. In the present study, the acute and direct effects of PTU on testosterone production in rat Leydig cells were investigated. Leydig cells were isolated from rat testes, and an investigation was performed on the effects of PTU on basal and evoked-testosterone release, the functions of steroidogenic enzymes, including protein expression of cytochrome P450 side-chain cleavage enzyme (P450(scc)) and mRNA expression of the steroidogenic acute regulatory protein (StAR). Rat Leydig cells were challenged with hCG, forskolin, and 8-bromo-cAMP to stimulate testosterone release. PTU inhibited both basal and evoked-testosterone release. To study the effects of PTU on steroidogenesis, steroidogenic precursor-stimulated testosterone release was examined. PTU inhibited pregnenolone production (i.e., it diminished the function of P450(scc) in Leydig cells). In addition to inhibiting hormone secretion, PTU also regulated steroidogenesis by diminishing mRNA expression of StAR. These results suggest that PTU acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450(scc) function and StAR expression.  相似文献   

17.
Data from several experimental approaches strongly suggest that Sertoli cells exert a paracrine control of the two main testicular functions, androgen secretion and spermatogenesis. Further evidence supporting this role of Sertoli cells was obtained by coculture of Sertoli cells with other testicular cells. Coculture of pig or rat Sertoli cells with pig Leydig cells produces an increase in the hCG receptor number and an increase in the steroidogenic activity of Leydig cells. Pretreatment with FSH further increases the values of these two parameters. These biochemical changes were associated with ultrastructural changes in Leydig cells. The effects of Sertoli cells on Leydig cells depend upon the ratio of the two cells and on the substrate in which the cells are cultured. Moreover, Leydig cells produce an increase in the FSH receptor number and in the FSH stimulation of plasminogen activator production by Sertoli cells. Coculture of rat or pig Sertoli cells with rat germ cells, induces an increase in the RNA and DNA biosynthetic activities of germ cells. Most of the stimulatory effects seemed to be mediated by diffusible factors, secreted by Sertoli cells, but full expression of the stimulatory action was observed when germ cells were in contact with other cells. In this coculture system, a fraction of rat germ cells containing mainly mature forms of spermatocytes inhibited rat Sertoli cell RNA and DNA synthesis, but had no effect on pig Sertoli cells. On the contrary, a fraction of rat germ cells richer in spermatogonias and preleptotene spermatocytes, stimulated rat Sertoli cell DNA synthesis but was without effect on pig Sertoli cells. These results clearly show that the stimulatory effects of Sertoli cells on Leydig and on germ cells which are not species specific are mediated mainly by diffusible factors, the secretion of which is regulates by FSH.  相似文献   

18.
The endocrine pathways controlling vertebrate spermatogenesis are well established in mammals where the pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) exclusively activate the FSH receptor (FSHR) in Sertoli cells and the LH/choriogonadotropin receptor (LHCGR) in Leydig cells, respectively. In some teleosts, however, it has been shown that Lh can cross-activate the Fshra ortholog, and that Leydig cells coexpress the Lhcgrba and Fshra paralogs, thus mediating the androgenic function of Fsh in the testis. Here, we investigated whether these proposed mechanisms are conserved in an evolutionary advanced pleuronectiform teleost, the Senegalese sole (Solea senegalensis). Transactivation assays using sole Fshra- and Lhcgrba-expressing cells and homologous single-chain recombinant gonadotropins (rFsh and rLh) showed that rFsh exclusively activated Fshra, whereas rLh stimulated both Lhcgrba and Fshra. The latter cross-activation of Fshra by rLh occurred with an EC(50) 4-fold higher than for rFsh. Both recombinant gonadotropins elicited a significant androgen release response in vitro and in vivo, which was blocked by protein kinase A (PKA) and 3beta-hydroxysteroid dehydrogenase inhibitors, suggesting that activation of steroidogenesis through the cAMP/PKA pathway is the major route for both Lh- and Fsh-stimulated androgen secretion. Combined in situ hybridization and immunocytochemistry using cell-specific molecular markers and antibodies specifically raised against sole Fshra and Lhcgrba demonstrated that both receptors are expressed in Leydig cells, whereas Sertoli cells only express Fshra. These data suggest that Fsh-mediated androgen production through the activation of cognate receptors in Leydig cells is a conserved pathway in Senegalese sole.  相似文献   

19.
Leydig cells located in the interstitial space of the testicular parenchyma produce testosterone which plays a critical role in the maintenance and restoration of spermatogenesis in many species, including horses. For normal spermatogenesis, maintaining Leydig cells is critical to provide an optimal and constant level of testosterone. Recently, an anti-apoptotic effect of IGF-I in testicular cells in rats has been reported, but a similar effect of IGF-I on equine Leydig cells remains to be elucidated. If IGF-I also protects stallion testicular cells from undergoing apoptosis, then IGF-I may have potential as a treatment regime to prevent testicular degeneration. The present study was designed to evaluate the anti-apoptotic effect of IGF-I on cultured equine Leydig cells. Testes were collected from 5 post-pubertal stallions (2-4 years old) during routine castrations. A highly purified preparation of equine Leydig cells was obtained from a discontinuous Percoll gradient. Purity of equine Leydig cells was assessed using histochemical 3β-HSD staining. Equine Leydig cells and selected doses of recombinant human IGF-1 (rhIGF-I; Parlow A.F., National Hormone and Peptide Program, Harbor-UCLA Medical Center) were added to wells of 24 or 96 well culture plates in triplicate and cultured for 24 or 48 h under 95% air:5% CO(2) at 34°C. After 24 or 48 h incubation, apoptotic rate was assessed using a Cell Death Detection ELISA kit. Significantly lower apoptotic rates were observed in equine Leydig cells cultured with 5, 10, or 50ng/ml of rhIGF-I compared with control cells cultured without rhIGF-I for 24h. Exposure to 1, 5, 10 or 50 ng/ml of rhIGF-I significantly decreased apoptotic rate in equine Leydig cells cultured for 48 h. After 48 h incubation, cells were labeled with Annexin V and propodium iodine to determine the populations of healthy, apoptotic, and necrotic cells by counting stained cells using a Nikon Eclipse inverted fluorescence microscope. As a percentage of the total cells counted, significantly lower numbers of apoptotic cells were observed in cells treated with 10 (9%) or 50 ng/ml (10%) of rhIGF-I compared with cells cultured without rhIGF-I (control, 22%). In this study, the results from the two assays indicated that rhIGF-I protected equine Leydig cells from undergoing apoptosis during cell culture for 24h or 48 h. In conclusion, IGF-I may be an important paracrine/autocrine factor in protecting equine Leydig cells from undergoing apoptosis.  相似文献   

20.
Localization of IGF-I and IGF-IR were observed in Leydig cells of horses using immunohistochemistry (IHC), suggesting IGF-I may play a role in equine Leydig cell steroidogenesis. Previous studies in other species have indicated that IGF-I increases basal and/or LH/hCG-induced testosterone production. The objectives of this study were to (1) test the synergistic effect of IGF-I on eLH-induced testosterone production in cultured equine Leydig cells and (2) determine if this effect is reproductive stage-dependent. Testes were collected from five pubertal (1.1±0.1 year; 1-1.5 year) and eight post-pubertal (2.88±0.35 years; 2-4 years) stallions during routine castrations at the UC Davis Veterinary Hospital. Leydig cells were isolated using validated enzymatic and mechanical procedures. Leydig cells were treated without (control) or with increasing concentrations of purified pituitary-derived eLH and/or recombinant human IGF-I (rhIGF-I) and incubated under 95% air: 5% CO(2) at 32°C for 24h. After 24h, culture media was collected and frozen at -20°C until analyzed for testosterone by a validated radioimmunoassay (RIA). In pubertal stallions, treatment with both increasing concentrations of rhIGF-I and 5ng/ml of eLH failed to demonstrate a significant difference in testosterone production compared with 5ng/ml of eLH only. However, in post-pubertal stallions, a significant increase in the concentration of testosterone in culture media was observed from Leydig cells treated with various concentrations of rhIGF-I and 1 or 5ng/ml of eLH compared with 1 or 5ng/ml of eLH only. In conclusion, IGF-I has a synergistic effect on eLH-induced testosterone production in cultured equine Leydig cells from post-pubertal but not pubertal stallions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号