首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Triple negative breast cancer (TNBC) is a heterogeneous subclass of breast cancer (BC) distinguished by lack of hormone receptor expression. It is highly aggressive and difficult to treat with traditional chemotherapeutic regimens. Targeted-therapy using microRNAs (miR) has recently been proposed to improve the treatment of TNBC in the early stages. Here, we explore the roles of miR-483-3p/HDAC8 HDAC8 premiR-vector on tumorigenicity in TNBC patients. Clinical TNBC specimens and three BC cell lines were prepared. miR-483-3p and expression levels were measured using quantitative real-time polymerase chain reaction. Cell cycle progression was assessed by a flow-cytometry method. We also investigated cell proliferation by 3-2, 5-diphenyl tetrazolium bromide assay and colony formation assay. We used a to overexpress miR-483-3p, and a HDAC8-KO-vector for knocking out the endogenous production of HDAC8. Our data showed significant downregulation of miR-483-3p expression in TNBC clinical and cell line samples. The HDAC8 was also upregulated in both tissue specimens and BC cell lines. We found that increased levels of endogenous miR-483-3p affects tumorigenecity of MDA-MB-231. Downregulation of HDAC8 using the KO-vector showed the same pattern. Our results revealed that the miR-483-3p suppresses cellular proliferation and progression in TNBC cell lines via targeting HDAC8. Overall, our outcomes demonstrated the role of miR-483-3p as a tumor suppressor in TNBC and showed the possible mechanism via HDAC8. In addition, targeted treatment of TNBC with miR-483-3p might be considered in the future.  相似文献   

2.
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3′-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3′UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.  相似文献   

3.
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.  相似文献   

4.
Total knee arthroplasty is a commonly performed safe procedure and typically executed in severe knee arthritis, but it also triggers ischemia-reperfusion injury (IRI). More recently, microRNAs (miRs) have been reported to play a contributory role in IRI through the key signaling pathway. Hence, the current study aimed to investigate the effect and specific mechanism of microRNA-23b (miR-23b), murine double minute 4 (MDM4), and the p53 signaling pathway in IRI rat models. First, the IRI model was established, and the expression pattern of miR-23b, MDM4, and the p53 signaling pathway-related genes was characterized in cartilaginous tissues. Then, miR-23b mimics or inhibitors were applied for the elevation or the depletion of the miR-23b expression and siRNA-MDM4 for the depletion of the MDM4 expression in the articular chondrocytes. By means of immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot analysis, IRI rats exhibited increased miR-23b expression, activated p53 signaling pathway, and decreased MDM4 expression. MDM4 was verified as a target gene of miR-23b through. Downregulated miR-23b increased the expression of MDM4, AKT, and Bcl-2, but decreased the expression of p53, p21, and Bax. In addition, a series of cell experiments demonstrated that downregulated miR-23b promoted articular chondrocyte proliferation and cell cycle entry, but inhibited articular chondrocyte apoptosis. The absence of the effects of miR-23b was observed after MDM4 knocked down. Our results indicate that silencing miR-23b could act to attenuate IRI and reduce the apoptosis of articular chondrocytes through inactivation of the p53 signaling pathway by upregulating MDM4, which provide basic therapeutic considerations for a novel target against IRI.  相似文献   

5.
Transforming growth factor β1 (TGF-β1) is a known regulator of chondrocyte proliferation and promotes cartilage repair in osteoarthritis (OA). microRNA-29b-3p (miR-29b-3p) is downregulated by TGF-β1 and overexpressed in OA cartilage. However, the ability of miR-29b-3p to mediate the chondrocyte pro-proliferative effects of TGF-β1 is not yet understood. This current study aimed to investigate the effect of miR-29b-3p on TGF-β1-induced cell proliferation in murine articular chondrocytes. The stimulation of chondrocytes by TGF-β1 for 24 h resulted in the downregulation of miR-29b-3p expression. The ratio of G0/G1 phase cells decreased in response to TGF-β1 whereas the ratio of S phase cells was increased. Consistent with this observation, miR-29b-3p overexpression inhibited TGF-β1’s ability to promote the ratio of S phase cells and downregulate the ratio of G0/G1 phase cells. These findings suggest that the downregulation of miR-29b-3p is a likely requirement for TGF-β1-mediated proliferation of murine articular chondrocytes. Furthermore, implying that miR-29b-3p expression may be involved in reduced chondrocyte proliferation in OA.  相似文献   

6.
Diabetic nephropathy (DN) is a serious complication in type 1 and type 2 diabetes, and renal interstitial fibrosis plays a key role in DN progression. Here, we aimed to probe into the role and potential mechanism of miR-483-5p in DN-induced renal interstitial fibrosis. In this study, we corroborated that miR-483-5p expression was lessened in type 1 and type 2 diabetic mice kidney tissues and high glucose (HG)-stimulated tubular epithelial cells (TECs), and raised in the exosomes derived from renal tissues in type 1 and type 2 diabetic mice. miR-483-5p restrained the expressions of fibrosis-related genes in vitro and renal interstitial fibrosis in vivo. Mechanistically, miR-483-5p bound both TIMP2 and MAPK1, and TIMP2 and MAPK1 were bound up with the regulation of miR-483-5p on renal TECs under HG conditions. Importantly, HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine. Our results expounded that HNRNPA1-mediated exosomal sorting transported cellular miR-483-5p out of TECs into the urine, thus lessening the restraint of cellular miR-483-5p on MAPK1 and TIMP2 mRNAs, and ultimately boosting extracellular matrix deposition and the progression of DN-induced renal interstitial fibrosis.Subject terms: Cell biology, Molecular biology  相似文献   

7.
8.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.  相似文献   

9.
Severe acute pancreatitis (SAP) is a condition associated with high rates of mortality and lengthy hospital stays. In the current study, SAP mouse models were established in BALB/c wild-type and P21-activated kinase 1 (PAK1) knockdown mice with the objective of determining the expression of microRNA-542-5p (miR-542-5p) and the subsequent elucidation of the mechanism by which it influences acute lung injury (ALI) by mediating mitogen-activated protein kinase (MAPK) signaling and binding to PAK1. The targeting relationship between miR-542-5p and PAK1 was verified using the bioinformatics prediction website and by the means of a dual-luciferase reporter assay. Following the SAP model establishment, the mice were assigned into various groups with the introduction of different mimic and inhibitors in an attempt to investigate the effects involved with miR-542-5p on inflammatory reactions among mice with SAP-associated ALI. Our results indicated that PAK1 was targeted and negatively mediated by miR-542-5p. Mice with SAP-associated ALI exhibited an increased wet-to-dry weight ratio, myeloperoxidase activity, serum amylase activity, TNF-α, interleukin-1 beta (IL-1β), and intercellular adhesion molecule-1 (ICAM-1) contents, p-p38MAPK, p-ERK1/2, and p-JNK protein levels as well as PAK1 positive expression, while decreased miR-542-5p levels were observed. Functionally, overexpression of miR-542-5p improves ALI in mice with SAP via inhibition of the MAPK signaling pathway by binding to PAK1.Based on the evidence from experimental models, miR-542-5p was shown to improve ALI among mice with SAP, while suggesting that the effect may be related to the inactivation of the MAPK signaling pathway and downregulation of PAK1 gene. Thus, miR-542-5p could serve as a promising target for ALI treatment.  相似文献   

10.
Hao J  Zhang S  Zhou Y  Hu X  Shao C 《FEBS letters》2011,(1):207-213
Both deregulation of tumor-suppressor genes and misexpression of microRNAs (miRNAs) have been implicated in the development of pancreatic cancer, but their relationship during this process remains less clear. Here, we report that the expression of miR-483-3p is strongly enhanced in pancreatic cancer tissues compared to side normal tissues using a miRNA-array differential analysis. Furthermore, DPC4/Smad4 is identified as a target of miR-483-3p and their expression levels are inversely correlated in human clinical specimens. Ectopic expression of miR-483-3p significantly represses DPC4/Smad4 protein levels in pancreatic cancer cell lines, and simultaneously promotes cell proliferation and colony formation in vitro. Our findings identify miR-483-3p as a potent regulator of DPC4/Smad4, which may provide a novel therapeutic strategy for the treatment of DPC4/Smad4-driven pancreatic cancer.  相似文献   

11.
12.
13.
Chondrocyte apoptosis has been implicated as a major pathological osteoarthritis (OA) change in humans and experimental animals. We evaluate the ability of miR-186 on chondrocyte apoptosis and proliferation in OA and elucidate the underlying mechanism concerning the regulation of miR-186 in OA. Gene expression microarray analysis was performed to screen differentially expressed messenger RNAs (mRNAs) in OA. To validate the effect of miR-186 on chondrocyte apoptosis, we upregulated or downregulated endogenous miR-186 using mimics or inhibitors. Next, to better understand the regulatory mechanism for miR-186 governing SPP1, we suppressed the endogenous expression of SPP1 by small interfering RNA (siRNA) against SPP1 in chondrocytes. We identified SPP1 is highly expressed in OA according to an mRNA microarray data set GSE82107. After intra-articular injection of papain into mice, the miR-186 is downregulated while the SPP1 is reciprocal, with dysregulated PI3K–AKT pathway in OA cartilages. Intriguingly, miR-186 was shown to increase chondrocyte survival, facilitate cell cycle entry in OA chondrocytes, and inhibit chondrocyte apoptosis in vitro by modulation of pro- and antiapoptotic factors. The determination of luciferase activity suggested that miR-186 negatively targets SPP1. Furthermore, we found that the effect of miR-186 suppression on OA chondrocytes was lost when SPP1 was suppressed by siRNA, suggesting that miR-186 affected chondrocytes by targeting and depleting SPP1, a regulator of PI3K–AKT pathway. Our findings reveal a novel mechanism by which miR-186 inhibits chondrocyte apoptosis in OA by interacting with SPP1 and regulating PI3K–AKT pathway. Restoring miR-186 might be a future therapeutic strategy for OA.  相似文献   

14.
15.
MicroRNA-17-5p (miR-17-5p) and epithelial-mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR-17-5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR-17-5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real-time PCR was used to detect the miR-17-5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR-17-5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit-8, the annexin V-FITC apoptosis, wound-healing, and transwell assays. The SRCIN1 was validated as a target of the miR-17-5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E-cadherin, N-cadherin, and Snail was identified by the Western blot analysis. MiR-17-5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR-17-5p. Silenced miR-17-5p could change the expression of EMT markers, such as upregulating the expression of E-cadherin, and downregulating the expression of N-cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR-17-5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR-17-5p/SRCIN1/EMT signaling pathway involved in the progression of OS.  相似文献   

16.
17.
18.
Chondrocyte production of catabolic and inflammatory mediators participating in extracellular matrix degradation has been regarded as a central event in osteoarthritis (OA) development. During OA pathogenesis, interleukin-1β (IL-1β) decreases the mRNA expression and protein levels of transforming growth factor-β receptor type-2 (TGFBR2), thus disrupting transforming growth factor-β signaling and promoting OA development. In the present study, we attempted to identify the differentially expressed genes in OA chondrocytes upon IL-1β treatment, investigate their specific roles in OA development, and reveal the underlying mechanism. As shown by online data analysis and experimental results, TGFBR2 expression was significantly downregulated in IL-1β-treated human primary OA chondrocytes. IL-1β treatment induced degenerative changes in OA chondrocytes, as manifested by increased matrix metalloproteinase 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 proteins, decreased Aggrecan and Collagen II proteins, and suppressed OA chondrocyte proliferation. These degenerative changes were significantly reversed by TGFBR2 overexpression. miR-302c expression was markedly induced by IL-1β treatment in OA chondrocytes. miR-302c suppressed the expression of TGFBR2 via direct binding to its 3′- untranslated region. Similar to TGFBR2 overexpression, miR-302c inhibition significantly improved IL-1β-induced degenerative changes in OA chondrocytes. Conversely, TGFBR2 silencing enhanced IL-1β-induced degenerative changes and significantly reversed the effects of miR-302c inhibition in response to IL-1β treatment. In conclusion, the miR-302c/TGFBR2 axis could modulate IL-1β-induced degenerative changes in OA chondrocytes and might become a novel target for OA treatment.Electronic supplementary materialThe online version of this article (10.1007/s12079-020-00591-2) contains supplementary material, which is available to authorized users.  相似文献   

19.
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)‐dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2O2) was measured by amplex® red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4‐deficient mice. Trichostatin A reduced Nox4 expression in a time‐ and concentration‐dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2O2. Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300‐ histone acetyltransferase (p300‐HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin‐activating enzyme E1 (PYR‐41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4‐deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4‐deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1‐induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300‐HAT‐dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号